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ABSTRACT

Capillary Flow in an Interior Corner

Mark M. Weislogel

The design of fluids management processes in the low-gravity environment of space

requires an accurate model and description of capillarity-controlled flow in containers

of irregular geometry. Here we consider the redistribution of fluid along an interior

corner of a container; following the rapid reduction of gravity, -gSi the fluid advances

along the corner to a height z = _:(t). The analytical portion of the work presents an

asymptotic formulation in the limit of a slender fluid column, slight surface curvature

along z, small inertia, and low gravity. The scaling introduced re_ders all parameters

in closed form or containing a slightly varying coefficient which may be computed

numerically. This scaling clarifies the distinction between the effects of corner ge-

ometry and surface curvature. Introducing an invariant transformation allows the

asymptotic equations to be solved using an accurate and efficient numerical scheme.

New similarity solutions are found and a list of closed:form expressions is provided

for flow rate and column length, Z;. In particular, it is found that/2 is proportional

to t I/2 for the constant height boundary condition, t 2/5 for a spreading drop, and t 3/5

for constant flow. A linear solution which describes the tip of the fluid column is

found to exist for all solutions. In the experimental portion of the work, measure-

ments from a 2.2s drop tower are reported. An extensive data set, collected over a

previously unexplored range of flow parameters, includes estimates of repeatability

and accuracy, the role of inertia and column slendernessl and the effects of corner

angle, container geometry, and fluid properties. It is found that there exists a loca-

tion ZH at which the interface height remains constant h(zH, t) = H after an initial

transient, t > tH. The height H is equal to the value predicted from the static shape

of a constant curvature fluid interface. Comprehensive comparison is made between

the analysis and measurements using the constant height boundary condition. Good

agreement is found for all times t > tH except near the tip for which agreement is

achieved only as t -+ ec. This discrepancy is due to the finite time necessary to

establish the constant height boundary condition and can be accounted for by using

the linear tip solution. Flow for short times t < tH is complicated by the presence

of inertia and surface curvature in z. However, we show that some of these flows are

described by similarity solutions.



Nomenclature

The dimensional versions of the dependent and independent parameters used in this

study are denoted by a prime symbol (t) unless otherwise specified. The use of the

subscripted shorthand notation for differentiation should be clear in context.

Dimensionless numbers and quantities

a

A

b

B

B_

Bo

Bon

BOH£

Ca

Cat

f
F

FA

h

J
k

K

£

n

Nv
Oh

P

Po
P

q

7_

Re

similarity transform parameter

cross-sectional flow area

similarity transform parameter

Hoffman shift parameter

constant

Bond number, ApgH2/a

Bond number based on surface curvature, fpgH2/a

Bond number based on curvature and column length, fpgH£/a

constant

Capillary number, #W/_

time-dependent Capillary number, #H/at
surface curvature function

generalized similarity function, F(U)

geometric function

cross, flow area function

cross-flow area sub-function

banded flow resistance function

meniscus height from z-axis, h(z, t)

mean curvature

aspect ratio function, 1 + D1/D2

geometric function, ¢(I - ¢/2)

numerically determined friction factor coefficient [9]

tip location,/](t)

number of sides on n-sided regular polygon

index of refraction

Ohnesorge number, #/(_pH) 1/2

pressure

scaled pressure, Po/cos 2 gt

wetted perimeter

constant volumetric flow rate

volumetric flow rate, Q(z, t)

(:2sin a a/fOh 2

Reynolds number, WH/v
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S

t

T

u

V

W

X

Y

Ym

Z

parameterized surface elevation, S(y, z, t;)

time

geometric time constant

x-component of velocity

y-component of velocity

z-component of velocity

spatial coordinate

spatial coordinate

y-coordinate value at contact line

spatial coordinate

Greek Symbols

C_

6

6

7
F

_RR

8

A

#

y

P

cr

T

¢

corner half-angle

numerically determined dimensionless flow resistance [11]

surface curvature angle, 7r/2 - a - 0

fluid column slenderness ratio

refraction angle

slope function for linear tip solution, F(c)

generalized similarity parameter

surface viscosity [11]

contact (wetting) angle

dimensionless drop volume

invariant transform coefficient

dynamic viscosity

kinematic viscosity

wavenumber

density

surface tension

transformed time (= Fit�2)

complimentary corner angle, 7r/2 - c_

Dimensional Quantities

C

D, Di

g

gi

go
G

linear fit coefficient-intercept

face width of test cell

acceleration field strength, gravity

component of g in/-direction

normal gravity, 9.Sm/s 2

flow coefficient
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H

L

m

R

tf

to

W

characteristic meniscus height

characteristic length of fluid column, or cell length

linear fit coefficient-slope

radius of curvature

local mean radius of curvature

curve fit time origin

inertial reorientation time, response time l-g to low-g

characteristic velocity

global meniscus location on cell centerline

Vectors

k inward normal to container wall

n outward normal to surface S

tl streamwise unit tangent on S

t2 cross-flow unit tangent on S

v velocity

Subscripts, Other
+

^

<>
O, 1, ...

I

II

I4
cl

d

exp

H

hyd

hyd_

i

ic

n-poly

rect

T1

T2

tip

star

invariant transform quantity

implies dummy variable

area-averaged quantity

counters for order of expanded quantity, constants, etc.

referring to limit _2 << I

refers to limit _2 << I, free surface condition

refers to limit _2 << i, captive surface condition

contact line quantity

dynamic quantity

experimentally measured quantity

quantity of constant height location

hydraulic diameter quantity, free surface

hydraulic diameter quantity, captive surface

counter

inscribed circle quantity

quantity for n-sided regular polygonal cross-section

quantity for rectangular cross-section

selected test, 2.0cs PDMS in 22.6mm eq. triangular cell

selected test, 10.0cs PDMS in 12.0mm eq. triangular cell

quantity evaluated at tip
static value
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visc

wall

quantity attributed to viscous effect

evaluated at wall-corner axis location of vessel
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Chapter 1

Introduction

We commonly think of capillary phenomena as relevant to small systems such as

capillary tubes, candle wicks, paper towels, etc. This is because on earth only small

systems allow surface tension and wetting phenomena to play a dominant role over

the otherwise controlling influence of gravity. In the presence of gravity the degree

to which capillary forces can be expected to be significant is measured by the Bond

number Bo -- ApgH2/cr, where Ap is the density difference across the fluid interface,

g is the acceleration of gravity, H is a characteristic length scale (i.e. tube radius,

pore size, etc.), and a is the interfacial, or surface, tension. The Bond number is

a ratio of gravitational forces to those of surface tension, and low values, Bo << I,

imply capillary dominated systems. The properties Ap and a are essentially fixed

for a given system. For earth bound systems g is also fixed and capillary dominated

systems arise only if geometries are small. However, for the low-gravity environment

of space, surface tension can dominate fluid systems of large extent.

1.1 Mechanism and Motivation

The subject of capillary driven flows in containers with interior corners is perhaps

best introduced via an illustrative example. Figure 1.1 depicts a container with a

square cross-section partially filled with a liquid in a gravitational field. The majority

of the interface is flat owing to the large Bond number of the system. However, as

is commonly observed, especially in the corner regions of the container, the interface

curves in order to satisfy the contact angle condition along the perimeter of the

interface.

A magnified view of the corner region shows that the local radius of curvature

: :_ : i i_)!il _
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Figure 1.I: Partially filled square container.

P_ of the meniscus decreases as the corner is approached. Since the pressure drop

across the meniscus is inversely proportional to P_-it follows that the pressure in

the liquid also decreases as the tip of themeniscus in the corner is approached.

Thus, a pressure gradient along the corner is established in the wetting liquid due to

increasing interface curvature. This gradient is in turn balanced by the hydrostatic

pressure gradient. If gravity were suddenly "turned off," the interface curvature

pressure gradient wouidno longer be balanced and a capillary driven flow along the
corners would ensue' The extent t° which the fluid rises in the corner during the flow

process is dependent on the contact angle (8) and corner half-angle (c_) of the system.

In many cases the fluid will climb to a great height if allowed, provided that the

contact angle is low enough. The criterion for whea such large scale flows must occur

is thoroughly addressed by Concus and Finn [1]-[3] who show that capillary driven

flows in corners of infinite extent proceed to infinite distances when the condition

O <1r/2-a (1.1)

is satisfied, hereafter referred to as the Concus-Finn condition, z This condition is

satisfied in the case of Figure 1.2 which illustrates this phenomenon for a square

1In their mathematical study, Concus and Finn were the first to obtain the result of the discon-
tinuous behavior of an interface in a corner at the critical value 0 = _r/2 - a. The condition of eq

1.1 appears also in other heuristic studies concerning interracial phenomena.



t =0

Figure 1.2: Capillary rise due to a step reduction in g.

cross-sectioned container employed in a simple drop tower experiment. (Note that

the figure displays only half of the vessel which is bisected along the diagonal.) After

release of the container in the drop tower, slender columns of fluid rise in the corners

due to capillary forces and act to drain the container by redistributing the fluid along

the corners.

Capillary pumping of this general sort arises in numerous contexts and is particu-

larly prevalent in low gravity environments where system designs are heavily impacted

by the presence of container irregularities such as corners. Examples of such systems

involve most, if not all, in-space fluids management processes, from the positioning,

control, and transport of liquids, such as fuels in storage tanks, to thermal systems

such as heat pipes and capillary pumped loops, to the storage and handling of bio-

logical fluids and wastes. Examples of terrestrial applications include flows in porous

media and the wetting and spreading of fluids on irregular surfaces-flow processes

which are commonplace in nature and industry.

1.2 Background and Scope of Research

A number of investigations have produced useful results on interface configurations

statics), flows, and stability for the capillary behavior of liquids in containers with

: : .... : / :/ _i- /'i:_!! _i i -_, •
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interior corners. 2 The case of capillary statics has been well addressed by the liter-

ature. Included in these studies, for example, are the effects of contact angle and

corner half-angle [I][2], container aspect ratio and corner rounding [4], differing con-

tact angles on adjacent faces of the corner [5], irregular triangular sections [6], and a

novel solution approach based on the inclusion of molecular forces [7]. The works of

Concus and Finn, who have obtained specific results for a host of cylinders of general

section , in partsummarized in [8]; are exemplary and a review of their work may

serve well the designer requiring insight into low-gravity interface shapes_

A significant amount of attention has also been devoted.... :to dynamics. Though

the majority of work [9]'[17] has centered on forced flows and/or wicking (imbibition)

in "micro-sized" geometries for earth-based applications, low-gravity experiments by

Masica (discussed in [I] and [8]) and by Langbein [18], in addition to a multitude

of applied space systems studies [19][20] have clearly demonstrated the large-scale

nature of such flows in the absence of gravity. Nonetheless, an ample collection of

quantitative analytical results on related flows applicable to the unusual conditions of

low-gravity, is yet to be acquired. Questions of: practical importance concerning the

general response time, flow rate, surface profile, and velocity distribution as functions

of the container geometry and fluid properties-including the contact angle-remain

to be fully resolved for the unique range of system parameters accessible with the

reduction of: gravity.

This work reports an analytical and experimental investigation to answer these

questions for a limited variety of container types and flow scenarios. The analytic por-

tion of the work begins with a description of the simplified problem of capillary-driven

flow along an isolated corner and follows with an asymptotic analysis employing the

lubrication approximation. The velocity scale used in the nondimensionalization of

the equations correctly captures the geometric effects of corner angle and contact

angle and reduces a numerically determined geometric function, used by previous

investigators, _ O(I) to oo, to one which is tightly banded and _ O(I). The govern-

ing partial differential equation is first solved by a regular perturbation method for

the case of the infinite corner. The equation is then transformed yielding similarity

solutions for the cases of capillary rise, a spreading drop, and a constant flow rate

condition. The impact of gravity, three dimensional surface curvature, inertia, and

the moving contact line boundary condition are considered.

A description of the experimental techniques, selection of test results, and dis-

cussion thereof follows for the special case of capillary rise. It is shown that the

analytical results, which often yield closed form expressions, are well-suited for use

in describing such flows, even at small times. Applications may be made to problems

2Interior corners are often referred to as "grooves," "edges," or "wedges" in the literature.
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arising in the low-gravity environment. Only systemswhich satisfy the Concus-Finn
condition are consideredin detail. For an analysisof the case0 > 7r/2 - a see Lang-

bein [21] who determines both the shape and stability of fluid columns in corners of

infinite extent.
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Chapter 2

Analysis: Governing Equations

The particular corner flow problem illustrated in Figure 1.2 was recently studied by

Dong and Chatzis [17] who employ 0.3-0.5ram diameter tubes of square cross-section

in an analysis and experiment on imbibition as relates to flows in porous media. As

in previous and related studies [II] [12], it is sufficient for the authors to simply state

the assumptions (locally parallel flow, negligible corner axis curvature and inertia,

etc.) and proceed with solutions to the reduced set of governing equations. The

'small' container size < O(Imm) of these experiments provides a firm basis for such

an approach. For a system of equivalent Bond number in a low-gravity environment,

however, the assumptions come into question. For example, the Ohnesorge number,

Oh - (2.1)
(apH)l/2

where # is the dynamic viscosity of the liquid, or rather I/Oh 2, is the correct choice

as a measure of the influence of inertia in capillary driven flows; similarly, as is the

Reynolds number in forced flows. For ground-based studies (g -- igo), a strong

capillary presence is maintained when the characteristic dimension H scales as the

capillary length, H _ (a/pg) I/2. Therefore,

,] :/21 ap a

Oh 2 "_ #-7 \-_/

Thus, in a microgravity environment (9 = 10-69o) the parametric range of i/Oh 2

is extended up to 3 orders of magnitude. More dramatic yet are the changes which

might be expected in the viscous time scale tv_sc _ pH2/#. With a 1000-fold increase

of H, realizable in a low-gravity environment, tvisc increases by 106 over its normal

gravity counterpart! To accommodate for such possible scenarios an effort here is

/



Fibre 2.1: Sketch of fluid in isolated corner.

made towards generalky. The governing, equations are scaled in such a manner that

the application of asymptotic techniques :leads to simply expressed solutions for a

variety of corner flow problems. A natural means for assessing the validity of the

solutions arises and the many constraints of the problems are quantified.

2.1 Analysis of Flow in an Isolated Corner

Since the corner flow controls much of the flow throughout the container, it is natural

to analyze the fluid in this region first. An isolated interior corner of angle 2c_

is depicted in Figure 2.1. The corner is partially filled with a fluid satisfying the

Concus-Finn condition. The coordinate axes are labeled on the figure, the z_-axis

corresponding to the corner axis, and S _ is the parameterized height of the free

surface as measured from the y'-z' plane.

Nondimensionalization

As shown in Figure 2.1, L is the characteristic length of the column of fluid along

the z_-axis and H is the characteristic height of the meniscus in the corner along the

xl-axis. The ratio of these length scales (c = H/L) is crucial to the analysis to follow.

7
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Lengths Velocities Other

x = x'/H
y = y_/H tan c_

z = z'/L
S = S'/H
h = h'/H

_=_'/L
Ym = Y_ax/ H tan a

u = u'/cW
v = v'/cW tan a

w = w'/W
(w)= (w)'/w
W = ca sin 2 a/#f

P = H f P'/cr

t = Wt'/L
A = A'/H 2 tan a

¢_= (_'/WH2tan _

Table 2.1: Nondimensionalized dependent and independent variables.

Table 2.1 provides the quantities used to nondimensionalize the governing equa-

tions. Primes are used to denote dimensional dependent and independent variables.

The length scales arise naturally from the geometry of the problem. The pressure is

scaled using a/Hf, and f = f(a, O) is a geometric function describing the curvature

of the meniscus in the x_-y ' plane, to be defined later. For this curvature scale to be

valid the curvature in the x'-z _ plane (_ 02S'/Oz '2) must be small by comparison.

In other words, the constraint of e2f << 1 must be imposed. The characteristic z l-

component of velocity, W, is determined through a balance of pressure and viscous

forces and uniquely incorporates the geometric influence of a on the solution domain.

The scales for u I and v _ are determined via continuity. A passive overlaying fluid is

assumed and, for the time being, body forces are ignored.

On substitution of the Table 2.1 quantities, the individual component equations

of the nondimensionalized Navier-Stokes equation become

e2T_ _ P_ + c2V2u (2.2)

with

and

2 2 Dv c2
e 7_ tan a-_ = - Py + tan 2 (_V2v

7_ Dw = -Pz + V 2w
Dt

D cO cO cO cO

D-_= cO-_+ _ + v_ + _Kz
cO2 cO2 cO2

V 2 -- sin 2 a_x 2 + cos 2 a-_--_ + e2 sin 2 O_Z2vy _

_2

T_ = fOh_ sin 4 a

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

>
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Oh is the Ohnesorge number given by Oh = (Ca�Re) 1/2 = #�(peril) 1/2, where Ca =

#W/a and Re = pWH/# are the Capillary and Reynolds numbers, respectively.

Defined as such, Oh serves as a ratio of the restoring-force time scale of surface

tension (,-, (pH3/cr) 1/2) to the viscous time scale (--_ H2/v). For Oh 2 << 1 systems

are underdamped to 'abrupt' disturbances while for Oh 2 >> 1 viscous forces dominate.

The accessible parametric range of _ is increased several orders of magnitude when

gravity is low. This influence is felt through Ohas described earlier. In general, the

condition Oh 2 >> 1 is not often satisfied even for 'small' normal-gravity systems.

The continuity equation is

V-v=0 (2.8)

The boundary conditions for the above system are as follows: The no-slip condition

is

v=O (2.9)

and applies along the walls. The scaled (x HI#W) streamwise and transverse zero

shear stress conditions on S are

and

ckik_

(2.10)

respectively, where

and

cot +v,)]: 0

ki = (I + c'S_) -i/2 (2.12)

k_= (i + IVSl2)-l/_ (2.13)

2 2
IVSl_= s_cot2a + _ &

The normal stress condition on S is

- P + 2e2k2[M] sin 2 o_= 27-I (2.14)

where

[M] = ux - Sycot _ a(uy + v_tan 2 a)- Sz(w_ + c2uz) + SySzcot 2 c_(wy + c2v= tan 2 a)



2 2+ s_v_cot=_ + _ s_ (2.15)
and 2?-/is twice the mean curvature of the interface given by

2u =fk_ cot2_ [sy_(1+ _s_) + _2S_(tan2_ + S_)- 2_%s_s_] (2.18)

Two (of four) boundary conditions on S are the meniscus centerline location and

symmetry conditions on y - 0; namely

S--h on y--0 (2.17)

0S
--=0 on y=0 (2.18)
Oy

where h = h(z, is). The remaining two boundary conditions concern the treatment of

the moving contact line. This poses particular difficulties in that the physics of the

moving contact line is not fully understood due to a well known stress singularity at

the contact line Rself [22][23].

The simplest conceivable formulation of the moving contact line boundary condi-

tion is the case of fluid statics where the condition

n. k=cosO (2.19)

is applied. 0 is the static (or perhaps equilibrium) contact angle of the fluid-solid

pair, I k is the inward normal to the container walls (on y -- ix) given by k --

(sina, _: cos a, 0), and n is the outward unit normal to S,

n= (1 -b VS2)-l/2(1,--SyCOt_,--cSz) (2.2o)

This boundary condition at the contact line is strictly valid when v = 0 and may

be approximately correct when the fluid velocity perpendicular to the contact line is

small. This is, in general, the case for the corner flow problem discussed here where

the predominant flow direction is parallel to the contact line. The use of eq 2.19

will be discussed in subsequent sections. The net effect of its application is that the

two additional boundary conditions for S, namely, the slope and the location of the

interface at the contact line, may be determined in terms of h. These conditions are

given by

1 + Sy cot 2 a cos 0
on y---- Ym (2.21)

(1 -F Ivsl_)l/_ = sina

IIf contact angle hysteresis is present and the contact line is in motion, # might best be taken

as the advancing angle on firstapproximation. For a clear definition of the distinction between

static and equilibrium contact angle and for a discussion of the difficultiesfaced when contact angle

hysteresis is present in systems exhibiting: partial wetting see [23,p. 328].
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and

S = y,_ on y = ym (2.22)

respectively, the latter condition being the interface/wall intersection condition and

Ym being the value of y at the contact line.

A mass balance in the z-direction gives

OA _ _ (2.23)
g_

Ot Oz (J z

where A is the cross-sectional area of the flow in the x-y plane and Q is the volumetric

flow rate in the z.direction, namely

A =- 2/oY'_(S- y)dy

Q= 2 /oYm fySwdxdy

and (w> - Q/A. The inlet and outlet conditions at z -- 0 and z = 1 and the initial

conditions remain to be addressed.

2.2 Asymptotic Equations

Though eqs 2.2-2.4 and their associated boundary conditions eqs 2.9-2.22 are a

formidable set of equations, the slenderness ratio e, appears as an obvious choice

for a small parameter upon which to base an asymptotic analysis. The limit e2 << 1

is the common lubrication approximation and, as in many other contexts [24], is

motivated by observations of the flow phenomena such as that depicted in Figure

1.2.

For the case e2 << 1 the dependent variables of the problem may be expanded in

asymptotic series

?.t = U o -I'-62"ttl -_-.-.

V -_-V 0 -_-62Vl -_- ...

W = W o _ 62"Wl _ ...

P = Po + e2 PI + ...

S = So + e2S1 + ...

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

II
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where terms of O(c) are absorbed into the leading order terms for convenience. In

the limit e2 << 1, assuming for the present T_ _ O(e2), the leading order equations

reduce to the z-component momentum equation

OPo 02wo B2Wo
Bz - sin2 a-_T ÷ c°s2Bx a_ (2.29)

Also to leading order, the boundary conditions for eq 2.29, eqs 2.9, 2.11, and the

constraint of flow symmetry about y = 0 may be expressed as

Wo=O on y=x

BWo BSoBWOcot 2_=0 on z=So
-Ox By Oy

BWo
--0 on y=O

By

respectively.The normal stresscondition can now be written as

- eo = f cot 1 + \N] cot (2.30)

with the leading order boundary conditions

So=h on y=0

Bso
--0 on y=0

By

So = Ym on Y = Ym

1 + _ cot 2 a cos 0

({o_zs ,2 ) 1/2 = -=----°nsmaI + \ Oy / c°t2 _

Y =Ym

Noting that Po = Po(z, t), the normal-stress equation may be solved directly with

its associated boundary conditions to find So, ym, f, and Po(h). This procedure

results in forms of these quantities which are unnecessarily awkward. Less cumber-

some forms are obtained by solving the geometrical 'cross-flow' problem sketched in

Figure 2.2 for the pressure in the liquid as a function of meniscus height h, with the

dimensional radius of curvature 2 taken to be constant R' -- fh'. This yields

1
Po -= -- (2.31)

h

2Note that the curvature of the interface is not a constant in the dimensionless x-y plane.

12
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xI

4r
y -"

Figure 2.2: Sketch to show variables used in the cross-flow formulation, eqs 231-234.

The height of the interface at a given z is So(h, y), where h(z, t) is the height at

y--0.

So=h(l+f)-fh l-k, fh ]

1/2

(2.32)

fhsin5 (O99_

tan

(cos_0)-1 ____(sin(a + 5))-1f = \sina 1 k _a 1 (2.34)

where 5 - Ir/2 - a - 8. The parameter 5 is introduced as a preferred angle (as

opposed to 8) which measures the degree of curvature of the interface in the x-y

plane. The condition 0 < 5 < _r/2 is the Concus-Finn condition. 3 The use of f in the

nondimensionalization of the problem leads to the unique expression for Po given in

eq 2.31 and the sign of f indicates the anticipated flow direction of the z-component

velocity scale W. The parameter f characterizes the strength of the driving force for

the flow due to curvature of the interface, independent of the cross-flow area. The

parameter ib-_A: /_A(O_, 5) is the cross-sectional area function (A' = h_2FA) and may

3The case of 5 < 0 is also accounted for in this result. Note that f can change sign depending

on the value of 5 indicating a change in positive to negative curvature of the interface. Positive
curvature is depicted in Fig. 2.2.

13
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Figure 2.3: The parameters f and FA as a function of 5 for various (_ (deg).

be determined geometricaUy

FA -- tan c_ \ 1 -- cos 25 ] tan c_
(2.35)

Figure 2.3 shows FA and f plotted against 5 for a variety of corner half-angles _.

Note that FA is an O(I) quantity for intermediate values of a (_/12 < _ < 5_/12)

and shows weak functional dependence on 5 for fixed o_. It can be shown further

that 1 _< FA/tan c_ < 4/3 for all _ and 5, and thus, the length scale yr _ H r tan c_

is appropriate for all c_ and 5 and that, in general, FA _ tans. Note also that f

behaves like I/5 for 5 --+ 0.

Regardless of the technique employed to solve eq 2.29 the resulting form for (Wo)

will be

(Wo)= -F_h2 _z = -F_Ohoz (2.36)

where Fi is some positive geometric function of a and 5. It is interesting that viscous

resistance (_ h -2) is balanced by capillary forces (,-_ h-2hz) in such a way as to leave

(wo) only dependent on the slope of the interface hz, and not on h. As a result,

non-zero velocities are possible for h = 0 provided hz -# 0.

14



Noting that A c< h 2, eq 2.36 may be substituted into eq 2.23 which, after some re-

arrangement, yields the leading order governing equation for the corner flow problem

in the e2 << 1 and fc 2 << 1 limits

ot 2 (2.37)

In this way, the meniscus centerline height h becomes the principal dependent variable

of the problem. Eq 2.37 also appears in the literature where it describes unsteady,

nonlinear heat conduction of the form Tt-- (T1/2Tz)z [17][25].

In addition to the selection of boundary conditions, solutions to eq 2.37 need only

F_ to begin. Generally speaking, Ransohoff and Radke [ii] and Ayyaswamy et al.

[9] have determined Fi for this problem. 4 They first use a finite element scheme to

solve eq 2.29 for wo. They then integrate over the cross sectional area to determine

(Wo} and the tabulated results are presented in terms of either a dimensionless flow

resistance, _, in the case of [II], or a dimensionless friction factor coefficient, K, as

in the case of [9]. Ransohof and Radke [12] also employ eq 2.37, as do Dong and

Chatzis [17]. Both employ/_ in its solution. In [12] the continuity equation in the

general form of eq 2.37 is solved numerically for a problem relating to snap-off in

constricted pores while in [17] a similarity solution is found applicable to imbibition

in square capillary tubes. The usefulness of these solutions is that they are only

restricted to c2 _ 1 (slender fluid column), c2f _ 1 (slight curvature along z-axis),

and 7_ < O(c 2) (small inertia). For many practical systems f _ O(1) and the second

constraint is naturally satisfied by the first.

An analytic form for Fi, however, is still desirable and under certain restricted

cases further asymptotic analyses are possible to determine its functional form and

hence the leading order behavior of the corner flow, namely h(z, t). It will be demon-

strated that the scaling presented here renders Fi a weak function of a and 5 such

that I/8 < Fi _< 1/6 for all values of a and 5. The utility of this fact should become

apparent in subsequent sections where problems of practical interest are addressed.

4Lenormand and Zarcone [26] and Trefethen [27] use a hydraulic diameter approach in effect to
determine Fi, the utility of which is discussed in [11]. Lenormand and Zarcone ([26], Appendix 2)
also anticipate the work of [17].
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2.3 Solutions for Fi

In this section asymptotic techniques are applied to eq 2.29 for the limiting cases

of small (I) and large (If) corner angle. 5 The latter is solved for the free (ZI) and

captive (lie) surface conditions. A form for _ is also determined using the hydraulic

diameter approach (Ill, Fhyd). In addition, two exact analytic expressions for Fi

are possible for the special cases of 0 -- _ -- _/4 and for 0 -- 7r/3, c_ -- _/6. These

results are then compared to the numerical results of Ransohoff and Radke [II] who

determine _ for a wide range of a, 0, and surface conditions satisfying the Concus-

Finn condition. From the definition of/3, it can be shown that

f2 (2.38)
Fi - _ sin2 a

For the free surface problem, the numerical results of Ayyaswamy et al. [9], who

calculate a friction factor coefficient K for the problem of gravity driven flow in

triangular grooves, are also applicable and are used to compare with Fi. It can be

shown t_at

F_-- _ Is-_n_ (2.39)

An outline of the generM asymptotic solution is provided for case I only. The

analytical details of the solutions for FH, Fx/¢, and Fhyd are relegated to Appendix

A.2. Though only the zeroeth order terms are applicable due to the nature of eq

2.29, higher order terms are retained for completeness.

Case I. FI, Small corner angle solution, tan2a << 1

In the limit _2 << 1, an expansion for Wo may be written

Wo = woo + Wol tan 2 a + Wo2 tan 4 _ + ... (2.40)

and when substituted into eq 2.29 may be solved for wo to any desired order subject

to the no-slip and symmetry conditions. This procedure yields

1 c_Po

Wo= 2 cos 2_ Oz (y2 _ z2)

The average velocity, (Wo)i, may in turn be determined using

tans OPO foYm _So(wo)x = h2_AA_OS2a -_Z (y2 x2)dxdy

(2.41)

(2.42)

5These cases were anticipated in [tl] yet no analytical treatment of them has appeared in the
literature to my knowledge.
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Upon substitution of the quantities Po, So, Ym and f from eqs 2.31-2.34 the above

integration yields
Oh

<Wo)i = -Fi-_z (2.43)

where F_ replaces Fi of eq 2.37 for the limiting case of small corner angle, tan 2 c_ << 1,

and is given by

I 12f si fi f 6-2sinT+-- - 6-2sinT+--+
F1 -- FA cos 2a -- 4 -2- 2 3 s_n 2 _ J

[5( si 26) (cot2a) 2 sinTcos36(l+3cot2@+_f3 6+ 2 1 5 -_sinT+ 24

sin36 sin4 6 c°ta a] } (2.44)6sin2a i5

Some limiting values of FI are

1 O_2 0_5

Fs(52 << 1) = _ + -_- + -_ + O(a 4)

1 a(57r) c_2( 57r 57r2_Fx(6=Tr/2--a)=-6+-_ 1---f_ +V 3 12 48] +O(a3)

which reveal that in the limit tan2a --+ 0, F/_ 1/6, and thus (Wo) = -hz/6. Note

also that 6 = _r/2 - a when 0 = 0.

Case II. FH, Large corner angle solution, f_2 << 1, 62 << 1

An asymptotic solution for F_ is also possible when a approaches _r/2. Introducing

=_ zc/2-a, the case of the large corner angle limit is given by f_2 << 1. For simplicity

of presentation, ¢ = 6/fL The limit f_2 << 1 automatically implies 62 << 1 when the

Concus-Finn condition is satisfied.

A. Free Surface Condition. A similar analysis as the above yields the full expression

for Fi ----FII to O(f_ 2)

70 - 126¢ + 77¢ 2 - 16¢ 3 f_2

Fx_= 35(¢- 2)_(3- 2¢) + (¢- 2)2(3- 2¢)2

458¢ 449¢ 2 284¢ 3 1613¢ 4 57¢ 5 16¢ 6x 12 15 + 15 21 + 700 + 350 _ ] +O(f_4) (2.45)

17
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with the limiting behavior

I t2 2

Y_x(¢= O)= _+ 5-+ °(n4)

49 _2
FIz(¢ = 1) = 1 + 1_ + O(__4)

289 554783 22
FII(¢ = .1)= 1575 + 1417500 + O(f_4)

B. Captive Surface Condition. This solution follows similarly for the case [22 << I,

but with a captive (no-slip) surface condition. The boundary condition on x = So

becomes w = 0. The full expression for Fi = FH_ to O(_ 2) is

70 - 126¢ + 77¢ 2 - 16¢ 3

FHc = 140(¢. 2) 2 (3- 2¢) +

_2 [3 10¢ 73¢ 2 34¢ 3 67¢ 4(¢- 2) 2 (3- 2¢) 2 3 + 3---6-- I0----5-- 17---5-

with limiting behavior

+
29¢ 5

175
4_]+o(a4)
225]

(2.46)

1

I 13 [2 2
FII_(¢ = 1) = _-_ + _ + O(_ 4)

289 11063 _2 + O(i24)
Fiic (¢ = - 1) = 630----0+ 354375

Case III. Fhyd, Hydraulic diameter solution

A. Free surface condition. Application of the hydraulic diameter concept for this

problem gives the result

2f-sin 26 tan (_-

{ I -- (l-cos6'_ tana
L \ sin6 ]

(2.47)

with limiting cases
1

Fhyd(_ 2 << I,¢ = I) -- I 13ft 2- 28--_+ _ + °(_4)
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25 49_ 2

Fh_d(a 2 << 1, ¢ = --1) = _ + _ + O(_ 4)

B. Captive surface condition. For the case of the captive surface condition the hy-

draulic approach yields the full expression

2$.sin 26 211121 [I -- (_) tana] 1 sin6 -I
L -- ( s--G_n_) tanc_ J +

with the limiting behavior

1

Fhydo(6 = 0) = 8(1 + sin c_)2

(2.48)

1 49f_ 2

Fh_do(a 2 << 1, ¢ = 1) -- 1152 + 3456-----6+ O(a4)

25 f_2

Fh_do(a 2 << 1,¢= --1) = _ + 7_ + O(a4)

Case IV. FIv, Exact solution for a free surface, a = 8 = _r/4

The analytic solutions for Fi are adapted: from classic solutions of viscous flows in

noncircular ducts [28]. For the case c_ = 7r/4, 0 = 7r/4, 6 = 0, and the free surface

(zero shear stress) boundary condition it can be shown that

192 _o tanh i7r/2]
1 1 E .... 0.14057... (2.49)

The actual flow domain here is the half section of a square duct bisected along the

diagonal.

Case V. Fv, Exact solution for a captive surface, a = _r/6, 0 = 7r/3

This is the solution for viscous flow through a duct with equilateral triangular cross

section. The boundary condition on the fluid interface is the captive (no slip) surface

condition [28]. Again, for this case, 5 = 0 and

1
(2.50)

Fv= 15

Summary of solutions for Fi
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Table 2.2 summarizes the above results for Fi and includes the numerical values

of [II]. Decimal values for Fi listed in the table are values determined using the

numerical value of _ and eq 2.38. Fractions or '...' values are either asymptotic or

exact analytical results.

Observation of the tabulated quantities reveals that, though/3 yields values from

O(I) to co for the full range of 8 and _ satisfying the Concus-Finn condition, Fi is

banded and O(I) particularly for the more important free surface condition where

1/8 < Fi _< 1/6. This is confirmation that the governing equations are scaled appro-

priately by the quantities of Table 2.1 and that sin 2 _ and f appearing in W capture

the respective geometric components of viscous resistance and capillary driving force

for the flow. For the case of the Concus-Finn condition with a free surface _ >_ 6. If

8 ----7r/2--_, then/_ --co.

In allcases Fayd < Fi and in the extreme cases,Fi can be as much as 40 times

larger than Fhyd (O_ = 7r/2 and 8 -- 0), or differ by as little as 10% (_ = 8 = _/4).

The hydraulic diameter approach does not nearly capture the nature of the correct

Fi over the full range of c_ and 8, and though the prospect of an analytic form for Fi

for all _ and 8 is attractive, the results/warnings given by Ransohof and Radke [11]

should be heeded and the hydraulic diameter approach should not be followed.

Table 2.3 compares F_ to K determined numerically by Ayyaswamy et al. [9] for

a selection of c_ and 8. It can be shown from the asymptotic analysis that for _2 << 1,

K = 48 + O(c_2). In the large angle limit _2 << 1, K - (8/F_)(1 - 6/3_ ÷ O(_6)).

Note also that if 6 = O, Fi = 8/K. In contrast to _, K(c_, 6) is a banded function

similar to Fi, and, as seen from Table 2.3, takes values in the range 30 < K < 57 for

the values of c_ and 6 listed. 6 The primary differences between K and Fi are sourced

in the length scale choice for the cross-flow problem. Ayyaswamy et aI. [9] use the

distance of the contact line from the corner to scale all lengths whereas h (or H) is

used in this analysis. The fact that Fi is more tightly banded than is K for the full

range of c_ and 6, and that F_ _ O(1) while K _ O(10), indicates that H is a more

correct choice for the cross-sectional length scale of the problem.

Figure 2.4 displays the results of Tables 2.2 and 2.3 for systems with a free surface.

It is readily observed that F_ falls within a narrow band of values for all c_ and 6.

In Figure 2.5, Fi is plotted against c_ for the captive surface condition. The banded

behavior of F_ for this problem is reduced. The asymptotic solutions for _2 << 1 are

6K may yield values less than 30 for a > 60°. For example, using the value of F_ determined
from the value of _ for c_ = 72°, _ = 0, eq 2.39 may be employed to show K = 27.9 for this
case. However, Fi values determined from the numerical values of _ and K show a discrepancy of
approximately 3% between the two numerical results at low contact angle (compare Fi in Tables
2.2 and 2.3 for c_= 30°).
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Free Surface (Z_RR= 0)

a e _ F_ Fh_
0 0

10 0

15 0

30 0

36 0

45 0

60 0

72 0

90 0

30 0

30 5

30 10

30 20

30 30

30 36

30 45

30 60

45 0

45 5

45 10

45 20

45 30
45 36

45 45

6* 1/6 1/8
9.98! 0.146 0.0548
12.95 0.141 0,0382

31,07 0.129 0.0154
46,67 0,127 0.0115

93.93 0.124 0.00790

443.0 0,126 0.00498

3185 0.131 0.00395

_* 1/7 1/8
31.07 0.129 0.154

30.89 0.132 0.0205

31.94 0.133 0.0261

38.10 0.136 0,0396

54.09 0,138 0.0558

75.20 0.139 0.0671
165.2 0.141 0,0861

c_* - 1/8
93.9 0.124 0,00790

93.99 0.127 0.0127

100.2 0.129 0.0191

139.0 0.133 0.0373

290.7 0.136 0.0640

698,2 0.138 0.0850

c_* 0.14057... 1/8

Captive Surface (zJRR = 10 _)

6* 1/6 1/8
13.6 0.108 0,0353

19.91 0.0914 0.0209

65,02 0.0615 0.00600

108,1 0.0544 0.00405

248,8 0,0469 0.00248
1411 0.0395 0.00137

11390 0.0367 0.00102

c_* 11/28 1/32

65.02 0.0615 0.00600

65.64 0.0619 0.00813

68.24 0.0624 0.0106

81.58 0,0634 0.0166

115.9 0.064.4 0.0241

16!.3 0.0649 0.0292

:355.5 0.0656 0.0380

oo* 1/15 1/18
248,8 0.0469 0.00248

253.2 0.0473 0.00408

270.8 0.0478 0.00622

374.9 0.0493 0.0124

782. 0.0506 0.0217

1881 0.0512 0.0291

_* - 1/(12+8v_)

Table 2.2: Values of/3, Fi, and Fhy d. An asterisk * indicates that the value was

determined by eq 2.38 using _. The parameter _nn is the surface viscosity coefficient

[II]. The free surface condition uses _RR = 0, and for these numerical solutions, the

captive surface, _RR ------co, uses the approximation zlnn = 108.
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0 c_ = 5 ° o_ ----10
0.1 45.691 0,159 43.784 0.152

5 46.295 0.159 44.951 0.152

I0 46.798 0:159 45.927 0.152

20 47.539 0.159 47,376 0.153

30 48.031 0:160 48:354 0.154

40 48.356 0.160 49,017 0.155

50 48.559 0.161 49,454 0.156

60 48.665 0.162 49;714 0.157

70 48.686 0,163 49.824 0.i58

80 48.625 0.164 49.793 0.160

85 :48.563 0:164: - -

0.1

5
10

20
30

40

50

60

0.1

5

10

2O

30

F_
is = 20

40.588 0.140

42.814 0.140

44,686 0.141

47.483 0.142
49.407 0.144

50.758 0.145

51.712 0.147

52.367 0.149

52:778 0.151

a='30 ' ' ce = 40

37.797 0i132 35.215 0.128

41.053 0.133 39.544 0.129

43.790 0:134 43.149 0.130

47.864 0:136 48.432 0.133

50.68! 0i138 52.058 0.136
52.706 0,140 54.703 0.139

54.20t 0i142 56.762 0.141

55.316:0i144 - -

a =60

30.449 01.127

37.615 0:130

43.214 0!.133

50.571 0.140

55.315 0.144

=50

32.797 0.126

38,346 0.128
42.863 0.130

49,262 0.134

53.563 0.138

56.720 0.141

=90(_ =0)

48 _ 1/6

37.3* 1/7

= 0 (for all 0)

48* 1/6

Table 2.3: Values of K and F_ for the free surface problem. An asterisk * indicates

that the value of K was determined by eq 2.39 using the asymptotically determined

value of Fi.
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Figure 2.4: Fi(_,0). For the free surface condition the value of Fi fails between

the curves for 5 = 0 and 0 = 0 approximated by dashed lines. For all c_ and 5,

1/8 < Fi <_ I/6. Data from Tables 2.2 and 2.3. C) f_, _ K, /_ asymptotic, [] Case

IV.

extended across the full domain of c_. From this point on only systems satisfying the

free surface condition as well as the Concus-Finn condition will be discussed.

With Fi determined analytically for cases I or II above, or by noting that 1/8 < _Fi

1/6 is a weak function of c_ and 0-the precise value of which may be determined nu-

merically [9][11]-eq 2.37 can now be treated using asymptotic and/or other analytical

techniques. Introducing _- = Fit/2 transforms eq 2.37 to

oh /oh : (2.51)
0---_= 2 \Oz) + hoz----_
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[
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0 15 30 45 _ 60 7"5 90

Figure 2.5: Fi((_, 8) for the captive surface condition. Dashed lines are asymptotic

results for _-/2 << I for 8 = 0 and _ = 0. Data from Table 2.2. (_)/3 'solid line 0 = 0),

asymptotic, [] Case V.
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2.4 Steady Solution

The steady solution to eq 2.51 is

h = (B1 + B2z) _/3 (2.52)

where B1 and B2 are given by the boundary conditions. By specifying h(zl, r) and

h(z2, r), B1 and B2 are determined, and eq 2.36 may be solved and substituted into

(_ = A(w) which gives the maximum flow rate due to capillary pumping for a fluid

column of length £.

2.5 Infinite Column Solution

The principle dependent variable h may be expanded as

h = ho + chl + c2h2 + ,.. (2.53)

Eq 2.51 includes terms through O(c). On substitution of eq 2.53 into eq 2.51, standard

asymptotics yields the O(I) equation

{c3h°_ 2 h cg_h° (2.54)Oho

o--V= 2 / + OOz2

and the O(e) equation

Oh1 Oho Oh1 02hi 02ho (2.55)
c% - 40z cgz + h ° -_z 2 + hi cOz---_-

One (of many) simple solution may be obtained for the corner flow by noting that

ho = const is a solution to eq 2.54. This solution describes an interface at steady

state in a corner of infinite extent. Then, by solving eq 2.55, h may be determined

to O(c)as
h = ho + c exp[-_2ho_-]C1 cos (_z + C_) + O(e 2) (2.56)

where _ is the dimensionless wave number (_ = _'/L) of some disturbance and C1 and

C2 are constants given by the boundary conditions. From this result several useful

characteristics for the flow may be distinguished.

A key feature of eq 2.56 is the emergence of a time constant. When redimension-

alized, the decaying exponent reveals

_2ho__ .._ c2 Fi sin 2 a at = _2(.T.Vat)_ 1 2.57)
f #H
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Figure 2.6: Geometric time constant T(a, 5).

where H is the unperturbed height of the meniscus. 9_ = f/Fi sin2a and Cat =

H#/at, the latter being a time-dependent Capillary number.

Recalling that Fi _ 1/7, for given base state fluid height H and fluid properties

a/p, the decay function will be o¢ t sin 2 a/f. Thus, the time constant will be c<

f� sin 2 a. The relationship T = f� sin2a is plotted in Figure 2.6 for a variety of

a and 5, for cases satisfying the Concus-Finn condition. As can be seen from the

figure, the time constant rapidly increases as 5 --_ 0, particularly for 5 < 10 ° where

T _ 1/(Ssin2a). The lowest value for T is achieved for a = 30 °, 5 = _/2 - c_. This

remains true when the slight variation of F_ with a and 5 is considered. The function

T is the ratio of geometric quantities which characterize the viscous (,-_ 1/sin 2 c_) and

capillary forces (,-_ 1/f). Changes in fluid behavior due to contact angle are effected

solely through the latter.

The contact line velocity can be determined from eq 2.56. The associated Cap-

illary number may also be estimated which shows an initial maximum value of

Cad N c3/5 _ that decreases exponentially with time. This value of Ca is indeed

small and supports the use of the static contact angle slip condition at the contact

line, eq 2.19.

It can be shown that the inclusion of gravity along the x-direction (g_) modifies

the result of eq 2.56 to produce

h = ho +cexp [-_2ho (1 + h2oBOH) 7] C1 cos (_z + C2) (2.58)
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The form of eq 2.56 is recovered for Boll =-- fpg_H2/a = 0 (see Appendix A.4) and

the column is unstable for Boll < --1 (ho = 1). Order of magnitude predictions of

settling times for slightly disturbed systems are possible by suitable selection of H

and L.

2.6 Similarity Solutions

Using similarity transformations eq 2.51 may be solved for several problems of prac-

tical interest. In this section a generalized similarity ODE for h(z, t) is derived. Then

solutions are found for the special cases of capillary rise_ a spreading drop, and con-

stant flow. All of these cases possess an advancing meniscus where h = 0 at the

tip. The location of the tip on the z-axis is denoted by £ = L(_-). These three

problems were alluded to in [17] and [26] and the problem of capillary rise was solved

in the former. The special case of capillary rise is rederived along with:the other new

solutions.

The introduction of

h = C1TaF(_) _7= C2z_ -b £ = _tipC_-l_-b (2.59)

where CI, C2, and _tip are constants, transforms the governing eq 2.51 to

T" l-a- 2b

FF,7, 7 + 2F_ CiC2 [aF + b_?Fv] = 0 (2.60)

The case of a = b = 0 is the steady state problem which yields a simple analytical

solution, eq 2.52. Similarity in eq 2.60 is achieved when

b = - (1 + a) (2.61)
2

giving
1

FFvv ÷ 2F2 C1C_ [aF + b_F,7] = 0 (2.62)

The difficulty now faced is one of identifying practical boundary conditions which

yield to the similarity form and supply values for a and b. The constants C1 and C2

may be selected as desired to simplify eq 2.62. For the special cases to be introduced

below, the derivation and/or selection of the quantities a, b, C1 and C2 is shown in

Appendix i.3 (see also [25]).
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It is useful to note that, in the case of similarity, eq 2.62 is invariant under the

transformation F = A2F + and rI -- AT+. The common requirement of F(rhip) =

F+(rl+p) -- 0 for problems involving an advancing tip permits the determination of

F:+ (_t+v) from eq 2.62, namely

b_ti+ (2.63)+ +

Due to the added degree of freedom introduced by A, rhi+ may be conveniently set

equal to 1. Eq 2.63 then specifies the slope at the tip. Now, knowing both F + and

F++ at the tip permits the use of a single step backwards Runge-Kutta method, when
numerical solution is necessary. The parameter A, and hence F and r/, may then be

determined by the integral mass balance or the applicable boundary condition.

It is remarkable to observe from these equations that the slope condition at the

tip is given by the equation itself. Though the magnitudes of the nonlinear terms
2F++ and rl+F++ are maximum at the tip, the linear terms contain F + which is

approaching zero there. As a consequence, Fv++ divides out and the result is a linear

system near and at the tip requiring only satisfaction of F+(1) = 0.

The invariant similarity equations for the three flow scenarios are presented below

with their respective boundary conditions choosing rhi+ -- I.

2.6.1 Capillary Rise (Constant Height)

This is the problem of an initially fiat interface (Bo _ oo) in the x-y plane. Gravity,

acting in the negative z-direction, is suddenly "turned off' and the flow proceeds up

the corner in the positive z-direction due to capillary forces-a process comparable

to the phenomena depicted in Figure 1.2. For this problem a = 0, b = -1/2, and

6'1 = 1, 6'2 = 2 -1/2 are selected. The choice of a and b result from an assumption of

constant meniscus height at z = 0, or rather, h(0, _-) = 1, which leads to F(0) = 1

for the transformed problem.

The condition F(0) = 1 is not obvious as the appropriate choice for this 'capillary

rise' problem. Though a condition of this type has been used previously [17], it has

not been demonstrated that in a time-dependent flow the condition F(0) = 1 is

established at rl = 0. The validity of this boundary condition will be discussed in

conjunction with the presentation of experimental data acquired to this purpose.

An analytic means for determining the constant height for several simple cell cross-

sections is provided in a following Section 2.6.8. [Note that h = F, rl = z(2T) -1/2,
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/_ = ?]tip(27)l/2.] The invariant eq 2.62 becomes

F+F_++_++ 2F;+J+?]+F:+

subject to

= 0 (2.64)

1

F+(1) =0 F++(1) = -_

Numerical solution to the above system gives F+(0) = 0.345... from which ,k may be

determined in order to satisfy F(0) = 1. Quantities of practical interest, namely, the

location and slope of the interface at the tip, and the slope of the interface at ?] = 0

may be determined as

?]tip = A = (F+(0)) -!/2 = 1.702... (2.65)

F_(?]t_,)= -_/2 = -0.851..

r,(o) = )_F+.(0)=-0.349...

The numerical solution for F+(?] +) is shown in Figure 2.7.

A first order asymptotic solution near the tip, where F + --_ 0 and ?]+ --_ 1, gives

F+ = 1 (1 - ?]+) (2.66)
2

and so ?]tip = 21/2 and F,(0) = F,(?]tip) = -2 -1/2. It is interesting to note that this

solution, though applicable to the tip region only, also gives F(0) = h(0) = 1, that

it satisfies F++,+ = 0 for all ?]+, and that ?]tip is reduced by approximately 17% when

compared to ?]tip determined by the full solution of eq 2.64. The tip solution of eq

2.66 is sketched in Figure 2.7.

2.6.2 Spreading Drop (Constant Volume)

This is the case for a drop of volume H 3 being instantaneously placed in an interior

corner. The drop spreads in both the positive and negative z-directions. Symmetry

is maintained across the x-y plane at z = 0 and the height of the drop at z -- 0

decreases as the fluid is pumped along the corner. A conservation of mass integral

gives a = -1/5, b = -2/5, and C1 = (_2/5)1/5, C2 = (52_) -1/5 are selected, where

= e/2FA. [Note that for this case h = _2/5(57-)-1/5F, _ = _-1/5z(5_-)-2/5, and

_C. = 1_l/5?]tip(DT)2/5. ]

The governing invariant eq 2.62 for this problem is

F+F:+_++2F_++2+ 27]÷F:++ r+ = 0 (2.67)
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subject to

F+(1) =0 F++(1) = -I

for which an analyticsolutionexists

F+ = _1 (1- _7+2) (2.68)
2

A may be determined via the integral mass balance and quantities of interest may be

computed,

1
F,7(_t_p) .... 1.496...

F(0) _?2ip 1(_) 2/5..... 1.119...
2 2

Eq 2.68 represented in terms of h(z, 7) is

where 0 <_ _7 _< A. The complete result for F + (7 +) is provided on Figure 2.7.

(2.70)

2.6.3 Constant Flow

When the flow rate q at the inlet (z = 0) is held fixed, the amount of fluid in the

corner, initially zero, increases linearly with time and the fluid profile increases both

in height and length, The integral mass balance for this problem gives a = 1/5,

b = -3/5. Constants C1 = (5q2) 1/5 and C2 = (5aq) -1/5 are chosen. [Note that h =

q2/5(57-)U5F, _7= q-1/Sz(5_-) -3/5, and £ = qU5_Tt_p(5T)3/5, where q = q'/FiWH2FA.]

Eq 2.62 can now be written as

+ + +2 3_?+F+ + F+F F;+n++2F_+ + - =0

subject to

(2.71)

3

F+(1) =0 F++(1) =--7

Numerical solutionof the above gives F+(0) = 1.200...and F:+(0) = 0.935...A may

be determined using the mass balance integral

(5 /o1F+2dr]+)-1/5A = rh_p = = 0.942... (2.72)
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Figure 2.7: Similarity function F+(r/+) for the (a) capillary rise, (b) spreading drop,

and (c) constant flow problems. The constant slope line (d) is the approximation valid

near the tip for the capillary rise problem. Note that for this solution F+(0) = 1/2.

a. Capillary Rise

b. Spreading Drop

c. Constant Flow

d. Linear Solution (a = 0)

1.702...

1.496.,.

0.942...

v_

1

1.119...

1.065...

1

-0.349...

0

-0.881...

-1/_

-0.851...

-1.496...

-1.413...

-1/v_

Table 2.4: Summarized values from the similarity solutions.

from which may be determined

F(0) = 1.065...

F,(o) = -0.881...

F_(_t_p) = -1.413...

The result for F+(_ +) is presented graphically in Figure 2.7.

A summary of useful values for the problems considered above is provided in

Table 2.4.
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a b

-1/3 -1/3

-1/5 -2/5
0 -1/2

1/5 -3/5
1 -1

a >> 1 -a/2

2a/(1 + a)
-1

-1/2
0

1/3
1

2

F+(0)
0

1/4

0.345

0.400

1/2
0.637

O0

0

-0.205

-0.312

-1/2

-o.755

(r;+(0))
O0

2

1.702

1.581

1.253

Table 2.5: Selected values from the generalized similarity equation, eqs 2.73 and 2.74.

2.6.4 Generalized Similarity Solution

It is instructive to di_ess here to point out several characteristics of the governing

similarity ODE, eq 2.62:: Restricting the discussionto cases a >_ -1/3, selecting

C1 = 1, C2 = Ibl1/2, and noting the condition b = -(t + a)/2, the governing eq 2.62

may be recast to give

F+F+ + 2F;++2+ _+F++r/+rl +

2a
F + =0 (2.73)

l+a

As described above, having introduced A, the boundary conditions can be specified

at the tip,

F+(1) : 0 F++ (I)= -1/2 (2.74)

Solutions to eq 2.73 above for several values of a are plotted on Figure 2.8 and the

significant numerical results are tabulated in Table 2.5. The cases of capillary rise,

the spreading drop, and the constant flow condition are represented by the curves

a = 0, -1/5, and 1/5, respectively, for this particular selection of CI and C2. The

solution F + -- (I - r]+)/2 is the asymptote for all solutions to eq 2.73 at the tip.

Note that the leading order tip solution, F + = (I - _1+)/2, found for the case a -- 0

(eq 2.66) is valid for any a. For a = 1 the linear solution holds, not only at the

tip, but throughout r/+. Furthermore, the sole coefficient in eq 2.73-multiplying the

last term of the left hand side-is only a slowly varying function of a: for a > 0 it

is bounded between 0 and 2, and for all a the coefficient is bounded by :2 and 2.

(Solutions for a < --1/3 produce curves which donot intersect the positive F+-axis.)

Consequently, for a .._ 1 the solution F+(rl +) is nearly linear.
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Figure 2.8: Similarity function F+(_ +) for a >__-i/3.

2.6.5 Inclusion of Gravity in x-direction

If gravity along the x-direction, gx, is incorporated into the analysis it can be shown

that the governing partial differential equation is given by

hr = 2h2z(1 + 2BOH h2) + hhzz(1 + BoHh 2) (2.75)

where BOH = fpgH2/a is the Bond number based on surface curvature (via f) and

characteristic height H, and with g-positive acting in the negative x-direction (see

Appendix A.4). By transforming this equation in like manner as for the similarity

solutions above one obtains

T-l--a--2b

FFv_(I+BoHC2_-2aF2)+2F2(I+2BoHC2m2aF 2) C1C2 [aF + b_F,7] =O (2.76)

which permits similarity solutions only when a = 0, b = -1/2. This means that only

solutions of the type determined for the case of capillary rise are possible. For this

choice the governing equation becomes

FF,_,_(1 + NollE 2) + 2F_(1 + 2BoHF 2) + rlF_ = 0 (2.77)

with h = F, V = z(2r) -1/2, and _: = _t_p(2r) z/2, subject to boundary conditions

F(0) = 1 F(_@) = 0
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and the integral mass balance

f_tlp2(1 + BOH)F,7(O ) + F2dr] = 0
.10

Since, in general, eq 2.75 assumes that surface tension effects dominate the flow

(pgH 2 tan 2 a/G << I), for the solution to be valid along the entire corner, it can be

shown that the range of Boll is restricted by the condition f-iBoH tan2 c_ << I. In

addition, the appropriateness of the boundary condition F(0) = I is unsubstantiated.

Regardless, F is solved numerically for several values of Boll and the results are

presented graphically in Figure 2:9i Solutions where g is negative (acting in the

positive x-direction) may also be determined and values for Boll > --I are shown.

F_(0) -_ -c_ as Boll -_ --!. Figure 2.9 illustrates the significant effect of negative

g on Fv(0) and the relatively modest effect on _?t_p.7 The numerical values for both

may be correlated wi_I_ Boll to produce

o.)77ti, = 1,702 (1 + 0.286B 1/2 (2.78)

F,(0) = -0.349 (1 + 0.7Boll) 1/2 (2.79)
1 -kBOH

i i

These relationships :are accurate to :1:3% for the range Boll > -- I, but should

be considered: practical only in the limit f-lBoH tan 2 o_ << 1. The case Boll --_ 0
: : ::: : :

recovers the capillary rise result of Section 2.6.1.

2.6.6 z-Curvature Consideration

An interesting similarity solution is possible if the effects of curvature in the z-

direction are considered in an asymptotic analysis. In the unique limits of e2 <<

e2f << 1, it can be shown that

0
leading to the governing partial differential equation

h, = 2h_ + hhzz - e2f (4h2hzhzzz + hShzz_) (2.81)

7For the infinite column solution inclusive of gx, the fluid in the corner is unstable for BOH < --1,
see eq 2.58.
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Figure 2.9: Similarity function F(_?) for the capillary rise problem for several values

of BOH.

Using the transforms of eq 2.59, similarity of the governing equation and boundary

conditions may be achieved only by setting a = -b -- 1 (h -- _-F, U -- z/_-) and the

resulting invariant system is

r F;+,_++2F,;++_ F,;+-F+ + + + + = (2.82)

subject to the boundary conditions F+(1) = 0 and F++(1) = -1/2. Two additional

boundary conditions are needed and F++n+(1 ) = +F_+v+n+(1) = 0 are likely good

choices. In the limit e2f << 1, a closed form asymptotic solution is possible to the

leading order system: choosing C1 -- C2 = 1

+ + +2r F;+n++2_;++,7+F:+-r+=o (2.83)

subject to F+(1) = 0 and F++(1) = -1/2. A solution is

1 1
F +=5(-7) (2.84)

from which F+(0) = 1/2 and F+(_) = -1/2. Using the integral mass balance

equation rlup may be determined, but only with knowledge of F(0) which raises the

question as to the nature of the condition of h(0, T). If F(0) = 1, as was considered

for the case of capillary rise, closed form expressions for h(z, "I) and £(T) are readily
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obtained. However, these solutions retain dependence on the length scales H and L

and thus are not unique. A function F(e) is introduced such that F(0) -- F(c). The

integral continuity equation thus gives

1''= _ = [2r(_)]v_n_ _ = [r(_)]v_ F_+÷_÷=o (2.85)

Solving for the dimensional values for h and L shows

h = at C2r(c) zC[r(c)]l/2 (2.86)
2 2 I/2

= GteLF_e,jl/2rl_l (2.87)
21/2

where

G - aFi sin2 a (2.88)
_f

It is interesting that if F(e) = e-2 all H and L dependence vanishes, similarly as if

c=1.

The leading order solution arises for the particular selection a = -b = 1. This

choice was necessitated by the presence of the z-curvature terms, which being O(_2f),

are eventually ignored. The solution is not unique as it satisfies the homogeneous

system of eq 2.37. This linear result is shown on Figure 2.8 (with a = 1).

2.6.7 Summary of Closed Form Results (dimensional)

The analytical and numerical solutions for the cases of Sections 2.6.1-2.6.5 yield

useful constants which allow the closed form determination of particular quantities

of interest. These include primarily tip location and velocity (by differentiation), but

flow rate and meniscus height and velocity at z = 0 may also be determined if desired.

The following are some of these results derived from the similarity solutions: £: is the

tip location, h is the meniscus height and (_ is flow rate at z = 0. All quantities are

dimensional in this section and the coefficient G is given by eq 2.88. FA is given by

eq 2.35 and the steady solution of eq 2.52 is provided for completeness. (Rapid and

accurate estimations of the quantities listed may be made by noting FA _ tan _ and

Fi _ 1/7.)
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Steady Solution, h = h(z). For the special case of h(0) =

const), eq 2.52 produces the dimensional results

H1, h(£) = H2 (12 =

(h=H1 1-_+\H-_I] (2.89)

FAGH_ ( (H: _ 3_ (2.90)

the latter which gives a 'maximum' capillary flow rate along a corner for these con-

ditions.

Capillary Rise, h(0, t) = H. The closed form results for this problem contain H which

is a quantity assumed constant for the flow. The determination of H for a number

of simple test cell types is discussed in Section 2.6.8.

12 = 1.702G1/2H1/2t 1/2 (2.91)

(_ = 0.349FAG 1/2Hh/2t -1/2 (2.92)

If the effect of g along the x-axis is considered, the above are modified by the corre-

lated coefficients for _?t_pand Fv(0) given in eq's 2.78 and 2.79, which when substituted

produce

£ = 1.702(1 + 0.286BoH)1/2G1/2H1/2t 1/2 (2.93)

(_ = 0.349 (1 + 0.7BoH)I/2FAG1/2Hh/2t_I/2 (2.94)
1 + BOll

limited to Boll > -- 1.

Spreading Drop, Volume H 3. Since an exact solution exists for this case, h itself can

be expressed in closed form.

h = 0.706FA2/aG-1/sHa/st-1/5 (1 - r]2/A 2) (2.95)

where A = (15/2) 1/s and 0 _< r] _< A with

rI = 0.796F_/5G-2/hH-3/ht-2/5z

12 = 1.879FA1/h G2/h H3/ht 2/5 (2.96)

h(O, t) = 0.706FA2/hG-_/hH6/St -V5 (2.97)

Constant Flow Q imposed at z = 0.

G2/St 3/5 (2.98)
12 = 1.634 _AA

h(0, t) = 1.279 a- /st (2.99)
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2.6.8 Determination of H_ Capillary Rise

As will be shown from experimental results, there exists a location z H such that the

interface height h(zH, t) appears to rapidly rise to and remain fixed at a certain height,

H. It is argued by Dong and Chatzis [17] that a constant pressure condition is estab-

lished in the fluid at a certain z-location for large time. From this constant pressure

condition the constant height H may be evaluated. Using the elegant approach of de

Lazzer and Langbein [29], H is determined below for the n-sided regular_polygonal

and rectangular cross-sectioned cylinders with sharp corners of face widths D and

Di, respectively:

Hn-poly = 2f FAn 1 -- 1 -- _-_--_) ] j (2.100)

where6 = - O, = -2)/2n, and

jD2sin(a+6) 1- !- (2.101)
Hrect = 4f FA_ D2y2sin2( + j

Note for the rectangle that Dz<_ D2, j = 1 ÷ D1/D2, and Hn-voZy = Hr_ct for the

square cross-section, n = 4, Dz/D2 = 1. FAn is given by

sin 2 6
FAn -- + sin6cos 6 -- 6 (2.102)

tan a

For the limits of 0 _< Dz/D2 _< 1 it can be shown that 1/2 < Hre_f cos O/DI < I.

Since ultimately _: _ H I/2, the effect of aspect ratio on Z: is limited to a _ 25%

increase over that of the square cell.

The scaling introduced in Section 2.1 restricts Fi to a narrow range of values

1/8 < Fi _< 1/6. Thus, G ,-_ sin 2 a/f for all values of a and 6. The dependence of

the tip location/: on system versus interface geometry can now be discerned. Recall

that for this problem of capillary rise the tip location is Z: _ (GH) 1/2 for the n-sided

polygon. For
FA_ cot _/n <<1 (2.10 )
sin2(a ÷ 6)

it can be shown that H ,,., 1/f sin(a + 6) for a fixed. For a fixed it can also be shown

that G ,--, 1/f. Thus £: _ 1/f where the contribution from H 1/2 ,'_ f-1/2 is strictly

geometric and is tied to the cross-flow area whereas the contribution G _/2 _ f-i�2

stems from the driving pressure gradient. In this way the effect of increasing contact

angle, or equivalently the limit 6 --_ 0, is seen to impact the tip location fi: by reducing
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the driving pressure gradient as well as the cross-sectional area for flow. This is also

true for the flow rate (_ since FA is only a weak function of 5 for c_ fixed.

The reason the cross-sectional area is affected to this degree by changes in 5 is due

to the system pressure argument leading to the constant height boundary condition

for this problem. For flow scenarios other than the capillary rise problem the effects of

increasing contact angle are predominantly due to reductions in the driving pressure

gradient and not to changes in cross-sectional area. This should be evident by the

fact that FA is a banded function of 5, FA _ tan c_ for all 5, and that A' = h'2FA.

Therefore A _ exhibits weak dependence on 5. As a case in point, for the problem

of the spreading drop (Section 2.6.2), H is the cube root of the drop volume and is

unrelated to any system parameters. The effects of increasing contact angle for this

problem come primarily through f as found in G (see eq 2.95) since FA is a banded

function in terms of 5.

2.7 Quantified Constraints

The solutions obtained above rely on a rather large number of assumptions, the

validity of which will now be investigated. The solutions themselves will be used

to estimate the order of magnitude of the terms neglected in the analysis. A list of

assumptions for the capillary rise problem is followed by a similar list for the problems

of the spreading drop and a constant flow. Each assumption is expressed using the

dimensionless numbers of eq 2.104 when possible. Otherwise dimensional quantities

are used.

While the asymptotic analysis formally requires only c2 --* 0 and c2f _ 1, for

practical application it is prudent to consider the order of magnitude of the other

parameters which might appear in the problem. Thus, the constraints on 7_, gravity

level, and the contact line boundary condition are also considered below.

For these calculations the following terms will be used to simplify the expressions:

Boll- f pg_H--_2 Cat #H jr- f (2.104)
a = _---_ Fi sin 2 a

where gi refers to the component of g in the/-direction. The lead constants ap-

pearing in the results are known exactly and are rounded and provided in decimal

form for completeness. It is important to note that for moderate a in the range

7r/12 5 a 5 57r/12, and for 5 > 7r/18 (implying lower contact angles), jr (c< T) is

approximately an O(10)-O(100) quantity (see also Figure 2.6). As 5 -+ 0, jr __+oo.

On the other hand, f is N O(I) for moderate a and 5 > 7r/18, but tends to N O(t_ -2)

and O(a/sin_) as c_ tends to _r/2 and 0, respectively.
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The standard assumptions of a passive overlaying gas, constant properties, and

ideally sharp interior corners of infinite extent are not addressed analytically.

2.7.1 Assumptions for Capillary Rise

• e2 << 1 [c = H/£(t)]. This is the slender column assumption and requires

0.345Cat jr << 1 (2.105)

This requirement is not appropriate near the bulk meniscus where c _ O(1),

locally.

• e2f << 1. This is the requirement of slight surface curvature along the corner

axis as compared to curvature perpendicular to it. It is given by

0.345fCatjr << 1 (2.106)

This condition is difficult to satisfy as 5 --* 0 since f --* ee in this limit, jr

behaves similarly.

• T4 << 1, or rather 7_ _ O(e 2) (see eq 2.7). In effect, this constraint is necessary

in order to neglect inertial effects on the left hand side of eq 2.4. For prac-

tical low-gravity systems of typical dimensions and fluid properties it usually

cannot be satisfied. It is often difficult to satisfy for normal-gravity systems as

well. A more precise accounting of the constraint of low inertia is offered by

]T_wo_/P_[ << 1, a quantitative comparison of the unsteady term to the driving

pressure gradient. The convective term is found to be an order of magnitude

less than the unsteady term ([WoWoz/Wo_[ _ 0.1) and so can be ignored. This

constraint can be written as

h 2 sin 2 a
<< 1 (2.107)

2_t

A worst case is when h = H. The presence of inertia in the problem will result

in the retardation of the flow, particularly during start-up. This constraint is

quite limiting for applications in low-gravity environments where H _ O(lOcm)

might be anticipated. However, near the tip where h _ 0, inertia is rightfully

ignored save at very small times.

• gx _ 0. Negligible gravity in the x-direction requires

BOH _ f pgxH2 << 1 (2.108)
(7
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• gz "_ O. Gravitational effects parallel to the corner axis (z-direction) are negli-

gible when

BOHr. =-- f pgzH£. _ 1.702Boll (Cat.T') -U2 << 1 (2.109)
a

The impact of gz increases with time as _ t 1/2.

• h(0, t) = 1, constant height assumed at z = 0 for all t. This initial condition
: ; : : . ::

was selected based on experimental observations. Its validity needs be verified

experimentally and will be addressed in Chapter 3.

• 0 = const. The solution for Wo may be decomposed into portions perpendicular

and parallel to the contact line. The component perpendicular to the contact

line may be used in turn to determine t_e local Capillary number (Cad), the

magnitude of which may be used to estimate departures:from the constant,

static contact angle assumption. Capillary numbers of sufficient size signal

the dynamic wetting phenomena leading to a dynamic apparent contact angle

(0d) effect which can decrease (increase)the effective curvature (contact angle)

of the free surface and so reduce the pressure gradient driving the flow. For

advancing and receding contact lines, the correlation of Hoffman [30] may be

used

0d = 4.54(B + Cad) °353 (radians) (2.110)

where

2.83
B = \4.54] (2.111)

provided B + Cad k O. The constant B incorporates the effects of partial

wetting. Firstly, Cacl is determined using 0 = 0star. This value of Cad is then

substituted into eq 2.110 and 0 d is estimated. Solutions producing significant

changes between 0star and 0d thus determined should be reconsidered in light

of dynamic contact angle effects.

The dimensional velocity of the contact line Vd is determined from

Vd = (h,- (wo>h_)(1 + h_) -1/2

Using this form and solving for Cad = #Vd/a gives

( ) 2 "-1/2(1+ h ca,f ) (2.112)
Cad = h2Cat 1 2_,7

Since h for this problem was determined numerically, h v must be evaluated.

However, h v is bounded such that -0.851 < h n < -0.349. If the constraint

e2 << 1 is satisfied using eq 2.105, and provided ._ < O(1), s eq 2.112 solved at

SThis will likely satisfy the constraint fe 2 << 1 as well.
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the tip (the worst case) gives

Ca_l -- 1.448Cat (2.113)

which can be used to determine _d from eq 2.110.

A quick and worst case estimation of dynamic contact angle effects may be

made on the tip velocity prediction using

y  p:(esto,)
Fi f - 1 (2.114)

1= 7

which gives the upper limit in terms of percent error due to 84. The error

decreases with increasing t through the effect of Cat oc 1It o n Cad and thus

0d. Iris also worthy of note that for fixed a, f is more sensitive to changes in

0d than is Fi. For instance, for a- _/4 a change of Od from 0 to _r/6 yields

an increase in F_ of10% While f increases 85%. As 0, f --+ _, while F_

cannot fluctuate more than 25% (!/8 < Fi _ 1/6). Therefore the principal

influence of 0d is not through _, but through f originating in the pressure

scale, P' N a/h' f .

2.7.2 Assumptions for Spreading Drop

For these calculations Cat, _-, and Boll :are the same as defined above and H is

determined: _om the drop volume: (H3), In addition, ), = _t_p and is given by eq 2.69

as determined by the exact solution to the similarity equation. Thus, 0 <_ _ < A.

Since FA _ tan a, in the limits a --+ 7r/2, or a --+ 0, then FA _ (7r/2 -- c_)-_, or

FA _ a, respectively (see Figure 2.3).

• c2 << 1 [c = h(z, t)/£(t)] is the slender column assumption.

0.141FA2/5(Ca,.T') 6/5 (1 _72_ 2- A2] << 1 (2.115)

The worst case is when _ = 0

® c2f << 1 requires slight curvature along corner _s compared to perpendicular

to it,

0.141IFA2/5(Cat.T') 6/5 (1 - _72_2 <<1 (2.116)
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• 7_ _ O(e2), or [7_wo,/Pz[ << 1 is the condition necessary to neglect inertial

terms.

]1,5(+)2[(pH3_2 (/_/2_3 f2F3 sin3 a 1- <<1 (2.117)
0.5[k ) t ) Y

This term is zero at the tip (_up = A) and is maximum at U = 0 where inertial

effects are greatest.

* gx _ 0 is the assumption that the effect of gravity perpendicular to the corner

axis (x-direction) is small. This constraint can be written as

Bob fpgxh2 - 0.5BoHFA 4/5 (Cat._) 215 (1 - _2_2- _2 ] << 1 (2.118)0 _

The effect of gx diminishes as the tip is approached.

® gz "_ 0 is the assumption that the effect of gravity parallel to the corner axis

(z-direction) must be small,

BOhL -- fpg_h£ _ 3.0BOHFA3/5 (Catm)_l/5 1 - _ < 1 (2.119)
O"

The effects of gz decrease as the tip is approached, but increase weakly with

time as _ t I/5.

• _ = const. As for the case of capillary rise, departures from Ostat may be esti-

mated by determining Cad. The steps follow similarly those outlined for the

capillary rise problem, only here

115 ( )2] 1/2 (2.120)Ca_x=O.42FA215(Ca6t.7" ) (_-1)[1+ 2Cat.Y -

It is interesting to note the location where Cad ----0, namely, _] = A/3. The

contact line upstream of this location is receding while that downstream is

advancing. When O.16(Cat_) 2 << 1 the above reduces to

Cad -- O.42FA2/5Cat (Cat._)U5 (_2 -1 } (2.121)

Hoffman's correlation may be used to estimate Od.
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2.7.3 Assumptions for Constant Flow

For this section the introduction of the length scale

(2.122)

simplifies the expressions and is used as 'H' was above in Cat, BOH, eta This

value for H is time dependent and increases with p/5. Note that H increases with

increasing viscosity and flow rate <_.

® e2 << 1 [e = h(z, t)/£(t)] is the slender column assumption. The worst case at

= 0,

0,61 \--_/ << 1 (2.123)

Although H increases with time, the length of the column increases faster and

e2 oc t -4/5.

• c2f << 1 describes slight curvature along corner axis compared to that perpen-

dicular to it,

0.61f- °-(H:FA_2<<I (2.124)
\Qt/

• 7Z _ O(e 2) or lTZWo,/Pzl << 1 is the condition necessary to neglect inertial

terms. It is zero at the tip and maximum at _?= 0. At _ = 0,

2.62sin 2 c_ H 2 << 1 (2.125)
f vt

Thus the constraint decays slowly with time as t -3/5 due to the increasing

height H.

• gz _ 0 describes the assumption that the effect of gravity perpendicular to the

corner axis (x-direction) must be small. This is always true at the tip but for

r/= 0,

BOh -- f pgzh2 - 1.64Boll << 1 (2.126)
dr

Note that Boh increases with t 2/5 and Q4/5.
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• gz _ 0 gives the assumption that the effect of gravity parallel to the corner axis

(z-direction) must be small and satisfy

BOhL -- f pgzh£ = 2.09Boll
O"

which shows BohL increases with t 4/s and (_a/5.

• 0 = const. The presence of 0 d effects may be estimated similarly as for the

previous cases. For the entire domain,

Cad = 0.48FiCatF_ (1 - a, )[1+0.4SCa,7 :] (2. 2S)

At the tip

Cad = 1.92FiCat [1 + 0.958Cat.T'] -1/2

and for small Cat_ with Fi _- 1/7, the above reduces to

(2.129)

Cad ---- 0.27Cat (2.130)

Cacl c< t-4/5(/£/0")6/5(_ 2/5 and may be used with Hoffman's correlation to es-

timate Od. The capillary number for this problem is higher in magnitude and

decreases at a slower rate than for the problems of capillary rise and the spread-

ing drop.

2.7.4 Abbreviated Summary of Assumptions

The assumptions analyzed above are summarized in Table 2.6. In this table, values

for r] are chosen at the origin or at the tip (77= )_) in order to present the maximum

magnitude of the constraint under consideration. The lead constants are dropped for

clarity. It should be noted that the condition to neglect inertia is c< I/# while that

to satisfy e2 << 1 is c< #.
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Constraint Capillary Rise Spreading Drop Constant Flow

C2<<I

c2f<< i

p_ <<I

g_ --_ 0

g_ _-, 0

h(O,t) = 1

e_(Cad)for
c2<<I

Cat << 1

Cat.T << 1

fCat_ << 1

H 2 sin 2 c_ << 1
A.vt

Boll << 1

see eq 2.119

see Chap. 3

Caa _ Cat

FX2/5(CatY) 6/5 << 1

fFA2/5(Cat.T) a/5 << 1

. pH3,_ 2 {H2_ 3 F3sin3 _" 1/5
\_t27 \vt/ _ <<I

BO_FA 4/5 (CatY) 2/_ << 1

BOHFA 3/5 (Cat.T') -1/5 << 1

Cacz _ FY42/SCat (Cat.r) !/5

Qt ] <<I

(_-_ << 1f_ Qt :

H 2 sin 2 a

fvt << 1

Boll << 1

see eq 2.127

Cad ,'_ Cat

Table 2.6: Summary of constraints.
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Chapter 3

Capillary Rise Experiments

In this chapter a brief introduction to experimentation in a low-gravity environment

is followed by a description of the: capillary rise experiments and test procedures.

A summary of a small portion of the test results is presented in graphical form to

illustrate several global features of the flow. Digitized surface traces of the devel-

oping flow are compared with the analytical results of the preceding chapter. The

initial transient and the 'start-up' flow for a sample test is discussed in light of ex-

perimental observations. A simple method for estimating tip locations at small times

is suggested. For the large capillary systems which can arise in low-g environments

one might expect significant inertial effects. However, it is observed that viscous

forces dominate the flow in the tip region to a high degree, and that the tip flow is

somewhat independent of a container length scale at small times.

Extensive experiments for the capillary rise problem were conducted which quan-

tify the broader effects of corner angle, container size, interior surface conditions,

and a wide range of fluid properties including system contact angle. These will be

described in a subsequent publication. The objective for presenting only a sample

of these results here is to illustrate the utility of the analytical solutions. A host of

normal and low-gravity tests were also performed for the case of a spreading drop

of fixed volume in an open corner (see Section 2.6.2). These tests were performed

to note the impact of corner angle, contact angle, drop volume, gravity, and fluid

properties on the capillary driven flow. These results will also be described in a

subsequent publication.
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3.1 Introduction to Low-g Experimentation

Experimentation in a low-gravity (low-g) environment is unique in several respects.

Container sizes can be orders of magnitude larger than their normal-gravity coun-

terparts. The large cell size, in addition to extending the range of certain fluid

parameters, also allows greater precision in container :fabrication,: diminishing the

role of surface contamination through corner irregularity and roundedness, :surface

roughness, and other heterogeneities. In addition, larger scale capillary flows are

not difficult to visualize and can be tracked over long distances. The near absence

of gravity reduces the need :to consider its complicating effects in analysis. Several

important applications of capillary driven flows exist in the low-g environment, e.g.

fluids management aboard orbiting spacecraft. It is appropriate to study such flows

in a low-g environment.

A 2.2 second Lop tower test facility at NASA's Lewis Research Center is used

to access the low-g environment for the:capillary rise testsi Though the low-g time

afforded by the drop tower is limited, the cells tested are sized to make adequate

use of the time available, The 2.2s drop tower is approximately 27m in height. To

minimize the ill-effects of aerodynamic drag on the experiment during free fall a drag

shield (a box-in-a-box) technique is employed. Gravity levels of 10-Sgo: are common.

A detailed description of this facility may be found in [31]. The description here will

be restricted to the test/drop rig apparatus,

3.2 Description of the Experiment

A transparent test cell is first mounted to a test stand and installed in a drop rig

apparatus. Prior to release of the apparatus into free fall, a prescribed amount of

fluid is injected into the cell, partly filling it. Upon release, hydrostatic forces are es-

sentially eliminated and capillary driven flow results. The flow process is backlighted

by a diffuse light source and filmed at a long working distance with a high speed

cine camera at 128 frame/sec. A sample of frames taken from the film records is

provided as Figure 3.1 for two tests of silicone oil fluid (PDMS) in a 22.6mm equilat-

eral triangular cell. Figure 3.1a is for 2.0cs fluid at 0.2s intervals while Figure 3.1b

is for 10.0cs fluid at 0.5s intervals (the top cross-sectional view of these cells is that

of Figure 3.2b). Quantitative data is digitized directly from the film records. Up to

four test cells could be tested simultaneously.

The principle variables for the drop tests are the container face width D and fluid

viscosity #. Corner half-angle c_ and liquid-solid contact angle 0 are also parameters
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Fluid _ ±2% p ±5 a ±5%

(cs) (kg/m 3) (N/m)

PDMS

PDMS

PDMS

PDMS

PDMS

PDMS

Table 3.1i Test fluids and

0.65

1.0

2.0

5.0

I0.0

20.0

properties.

760

816

872

913

935

949

ND

0.0159 1.374

0.0174 1.383

0.0187 1.390

0.0197 1.396

0,0201 1.399

0.0206 1.401

Polyd!methylsiloxane (PDMS, silicone oil)

provided by Dow Corning. Ostat = 0 on all surfaces.

Cell Cross Section Material ND

(section type) (5893._)

equii, triang!e (b)

equil, triangle (b)

near square (c)

;:near square (c)

acrylic

acrylic

acrylic

acwlic

rectangle (c) acrylic

rectangle (c) ...... , acrylic

equit: _riangle (b? quartz

equil, triangle (b) quartz

square (a) quartz

square (a) quartz

1.491

1.491

1.491

1.4!91

1,491

1.42 !
1.459

1.459 i

1.459

1,459

Table 3.2: Test

L

(ram)!
150

15o
15o
15o

iiili

15o
_0

i60

60

60

D or D1 x D2 a

(+0.05ram) (deg.)

12.0

22.6

6.1 x 6.7

12.9 x 13.2

6.0 x laiO

x 25!6

5!0

10.0

5.0

10.0

3O

30

45

45

45

45

30

30

45

45

cell data for capillary rise tests.

of interest, but in this report only systems with Ostat = 0 will be considered. The

properties of the liquids and test cells appropriate for the tests to be presented are

listed in Tables 3.1 and 3.2, respectively.

As thephysical condition of the corner is critical to such flows the manufacture of

the test cetis is also critical. Figure 3.2 disp!ays _he joining technique of the faces for

the cells. The acrylic cells are glued and the quartz cells are fused at the joints. In

order to assess fabrication variability, four reproductions of each quartz section type

and two of each acrylic cell were constructed. Tolerances of the critical dimensions

are included in Table 3.2. Variations in corner angle are minuscule.

The dimensions for the rectangular cells are also included in Table 3.2 where

L here is the total length of the cell. The majority of the tests were performed

using cells of square or equilateral triangular cross sections. For both of these cell

5O

• :.......... : :: ....... ///•: :::F: •/:: ::::•?:/i:••



D

•'_ _ ...... i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:!:i:i:i:i:

_iii l:_ii_iiiiiiiiiiii_i!iiiiiiiii_iiiiiiiii

...._i_i_i_i_i_i!i_i_ii_iI : ,i iiiiiii!i!i!iiiiiii!i!M!ili

T
D

b.

i 'i i i iiii iiiiiiiiiiiiiiiiiiiiiiiii!ili

C.

Figure 3.2: Cross sections of capillary rise test cells.

configurations, the cells are fabricated such that the meniscus centerline along the

corner h(z, $) can be viewed in profile with a minimum of optical distortions. Figures

3.2a and 3.2b show the cross-sections for these cell types. A ray trace analysis,

described in Appendix B, which provides corrections for distortion when refractive

indices are not matched, is employed for certain meas_ements. These corrections

are never greater than 10%.

Cell cleaning procedures were developed for each cell material to provide an ac-

ceptable degree of control over the surface condition. The cell preparation includes

washing with a strong soap solution in hot water, rinsing thoroughly with distilled

water, then rinsing with ethanol and/or methanol followed by a final distilled water

rinse. The cells are allowed either to air dry or are dried in a vacuum oven. An

additional acetone wash step is added for the glass cells before the ethanol rinses.

3.3 Preliminary Measurements

The principal measured quantities from the film records are the location of the lead-

ing tip of the fluid in the corner i:(t), the global meniscus height Z(t), and the surface

profile, or meniscus centerline height h(z, t) (see Figure 3.1 for notation, all length

measurements are in mm). A sample of these results is provided and, where appli-
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cable, the dependentvariableis plotted against t 1/2 as suggested by theory. Figures

3.3-3.7 are intended to convey the: general character of noteworthy aspects of the flow

using the point location measurements of/: and Z. A comprehensive analysis of two

data sets is deferred to Section 3.4.

3.3.1 Tip Location, £(t)

Figures 3.3 and 3.4 display data comparing the impact of viscosity, cell size, and

corner angle on the tip location, E(t). F!gure 3.5 illustrates the effect of container

aspect ratio for rectangular cross-sectioned Cells. All tests here are performed with
:,_:

/_sta_= 0 in acrylic cells. Th_ linearity of _,ne data seems to imply the t !/2 dependence

of f for this flow which w_,demonstrated by Dong and Chatzis [17] to be correct at

long times. As anticipated, the tip ve!_!t) ._increases with decreasing viscosity and

increasing cell size as observed in [17]. The tip velocity is also seen to increase for

c_ = 30 ° compared to c_ = 45 ° for cells of approximately the same inscribed circle

diameter. I The solid lines are fits f = c +mt I/2 to the data (symbols) and exclude

the initial data points for times t < 0.is.

Concerning Figure 3.5, it is interesting to observe that the slope of the fits in-

crease only modestly for a 4-fold increase in aspect ratio. This isdue to the relative

insensitivity of H to DI/D2 as could be demonstrated analytically by eq 2.101.
: : : ::

The measurements for these figures are made using a film motion analyzer in

manual mode without image processing, Multiple drop tests are made to note the

repeatability of the measurements in regards to cleaning technique, fill technique,

etc. The majority of tests show repeatability 2 to within :k6_ when comparing fitting

parameter coefficients for the different runs and :]=3% is common. With this level

of precision it is easy to quantify differences in flow behavior from vessel to vessel,

and even from corner to corner of the same vessel. Concerning the latter, as regards

the tip location, asymmetric flows are detected between different corners of the same

vessel. These differences are repeatable (again to within +6%) and are linked to
discrepancies in the fabrication quality of the corners. The largest differences are

observed in the tip location measurements for the rectangular cross section vessels,

yet are always less than 10%.

It is important to note that when the Concus-Finn condition is satisfied, regardless

of the gravity level, a thin column of fluid already exists in the corner prior to the

drop test [2]. This preexisting film makes it difficult to determine the true tip location

1Recall that the case of a = 30° provides the most rapid response of the fluid (see Section 2.5).
2This is true when the number of duplicate tests: was statistically significant.
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0.4 0.8 t 1/2 1.2 1.6

Figure 3.3:/2 (mm) as a function of tl/2 (s :/2) in acrylic triangle, D = 12.0ram, for

fluids of different viscosity. [] 1.0, A 2.0, O 5.0, and V 10.0cs.

4O

0.4 0.8 tl/2 1.2 1.6

Figure 3.4:/2 (mm) as a function of t :/2 (s :/2) for a fluid of _ = 5cs in an acrylic

cell showing the effect of cell size and corner angle. [] D = 22.6mm triangle, O 12.0

triangle, A 12.9 near square, and V 6.1 near square.
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Figure 3.5: £ (mm) as a function of t 1/2 (s U2) in acrylic rectangular cells for a fluid of

v -- 5.0cs showing the effect of aspect ratio. C) D1 x D2 = 6.1 x 6.7ram, V 6.0 x 13.0,

and [] 6.1 x 25.6.

of the meniscus duringthe early stage of the drop tests. An apparent Z:(t) was thus

measured at the onset of the flow by extrapolating the apparently linear meniscus

profile near the tip to the vertex of the corner. The infinite rise of the fluid in the

corner is based on a continuum approach and of course an infinite corner. Provided

the corner is long enough, the effects of corner imperfection, finite molecular size,

Van der Waals forces, and even evaporation will prevent such an unbounded height.

As the fluid column rises during the drop, upper portions of the corners are reached

where the film is not observed: and data are taken in these regions without any need

for extrapolation. A smooth transition between data measurement techniques is

achieved as can be seen from the data. It is arguable that flow in the preexisting film

is so dominated by viscosity, and the slope of the surface so slight, that its presence

for a portion of the bulk flow (on average 0.1s of the 2.2s drop time) is of little

significance.

Another complication in the tip measurements is that during the latter stages of

the corner flow the tip location for some of the tests (usually low viscosity fluids in the

smaller test cells) becomes increasingly difficult to locate as the slope of the meniscus

approaches zero. Though the rise can be viewed without mistake at high playback

speeds, stop-action digitization of the tip location leads to some loss of accuracy for

these cases. How much loss is uncertain. For these tests, repeat measurements of a
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Figure 3.6: Z (ram) as a function of t !/2 (s U2) in an acrylic triangle with D = 12.0ram

for fluids of various viscosity. @_, = :0.65cs, V 2.0, [] 5.0, and/_ 10.0.

single test event show measurement repeatability ('experimenter' error) on the order

of the experiment repeatability itself, namely ±3-6% when comparing fit coefficients.

3.3.2 Global Meniscus Height, Z(t)

Figures 3.6 and 3.7 show the decrease of Z with time, which is related to the drain

rate of the container. As was the case in Figures 3.3 and 3.4, for the cells tested here,

the flow rates and flow velocities increase with decreasing viscosity, increasing cell

size [17], and decreasing corner angle for this range of c_ > 30 °. The dimensions of

the cells used in Figures 3.4 and 3.7 were selected so that the radius of the inscribed

circle is approximately the same for the large triangle and the large square cell. The

small triangle and small square cells also share approximately the same inscribed

circle radius.

3.4 Detailed Measurements

From the results of the point measurements presented in Figures 3.3-3.7 one might

conclude that the similarity solution of Section 2.6.1, producing the _i/2 dependence
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_1.0

o.o 0.5 tl/2 1.o 1.5

Figure 3.7: Z (mm) as a function of t !/2 (sl/2)for a fluid of _ = 5cs in an acrylic cell,

showing the effect of cell shape and size. [] D = 22.6mm triangle, (_) 12.0 triangle,

A 12.9 near square, and _6.1 near square.
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Figure 3.8: £ (mm) as a function of t (s) in acrylic triangular cells with c+m(t-tl) 1/2

fits. V _ -- 2.0cs, D = 22.6mm (TI: c = -6.17ram, m = 54.88mm/s 1/2, t/= 0.041s),

(_), -- 10.0, D = 12.0 (T2: c = -0.43ram, m -- 17.61mm/s _/2, tf = 0.063s).

for the flow, is in general correct for times t > 0.1s. Such a conclusion is premature

as will demonstrated below using surface profile measurements orb(Z, t).

The measurements from two capillary rise tests of PDMS in equilateral triangular

cells will be presented and contrasted in this and the following sections. In the test

denoted T1 the viscosity is 2.0cs and the face width D - 22.6mm. For the test

denoted T2 the viscosity is 10cs and D -- 12,0ram. _(t)and Z_t) are presented in

Figures 3.8 and 3.9 for both tests, the data of the former being fitted by a line of the

form _ _ c + m(t -- t$) 1/2.

3.4.1 Surface Profile, h(z,t) for data set T1

In Figure 3.10 are overlayed ten digitized surface traces for the corner flow of test

TI. These data, and the data to be presented subsequently, are acquired using an

automated image analysis system which digitizes the cine film records for selected

frames and tracks the development of the meniscus in time. The grabbed images are

low-pass filtered and a median threshold is selected to define the interface which is

then skeletonized. Figure 3.10 suggests that there is a location z = ZH such that

the height at the location h(ZH,t) -- H is fixed for sufficiently long times. In the
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Figure 3.9: Z (mm) as a function of t (s) for T1 (V, to _- 0.09s), T2 ([:], to _- 0.03s).

figure, this location appears to occur at approximately ZH _ llmm. A magnification

of the region near this point depicts the waist created by the curves passing through

a narrow neighborhood near ZH, Figure 3.10b. Measurements of the local surface

height, h(z_, t), at several Z'iocations, zi, in this region are presented in Figure 3.11.

The distance between each zi is approximately l.Smm. As can be seen from the

figure, depending on zi, h(zi, t) will in general under- or overshoot h(zH, t) =-- H.

The data of Figure 3.11 for t > 0.7s are replotted and fit with linear coefficients

on Figure 3.12. This figure reveals that there indeed e_sts a z = ZH such that

h(ZH, t) _- Heap - co_tst (Heap = Xwall- XH). Interpolation between the smallest

positive and negative slopes provides the empirically determined z = ZH and Heap.

The interpolated ZH is between the hollow and solid triangles on the figure. In

subsequent figures, the origin is moved to z = Zg. This location then defines the

apparent origin where the constant height boundary condition of the asymptotic

analysis can be applied. Downstream of this location h is always increasing towards

H while upstream h is decreasing everywhere to this same level. Since only limited

time was available for these tests the long time behavior of the boundary condition

at Zg cannot truly be confirmed. However, the results of Dong and Chatzis whose

experiments lasted hours offer strong evidence that the constant height ('constant

pressure') condition is acceptable. H = 3.67mm determined analytically :as discussed

in Section 2.6.8 compares well with Heap = 3.73 4-0.15mm determined experimentally

for this test, as noted on Figure 3.11. Uncertainty in the experimental measurement
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Figure 3.10: Traces of the surface height h(z, t) measured along x for T1. As time

increases the profiles recede at the centerline x _ 30mm and advance along the wall

at x = 43.0mm. The surface profiles are shown for times t = 0, 0.078, 0.156, 0.234,

0.312, 0.390, 0.547, 0.703, 0.859, and 1.015s. (a) Global profile to cell centerline, (b)

enlarged view of dashed box area on (a). The coordinates x and z are in mm.
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Figure 3.11: h(z_, t) (mm) as a function (s) for T1. Each data set is taken for

constant zi with an increment of approximately 1.5mm between each z_.

of H is due to the optical scale factor of the measurements and the corrections for

image distortion caused by refraction.
:::: ::: ::

H is not fully established until approximately _H ----0.4S. The initial inertial tran-

sient to _ (pR_c/a)i/_ for the establishment of the low_g interface may be observed

by the rapid decline of the meniscus Z(t) early duri_g t_ d_p test. These times

are noted on Figure 3.9: along with the estimates to = 0,09 and t0 = 0.03s for T1

and T2, respectively. Note that to _- 0.75(pR_c/_) 1/2 and that the general order of

to agrees with the fitted time origin t I of Figure 3.8. Siegert e_ al. [32] demonstrate

that the initial time response of an interface after a step reduction in gravity level

may be correlated by to = C(pR3/a) 1/2, where R is a characteristic length and C

is a constant, both of which depend on the container geometry. For a right circular

cylinder of radius R = R_ they find that C -- 0,413.

The experimental values of Zg and tH are used to rescale the height data; Figure

3.13 shows h as a function of zt -1/2 and z(t - tg) -1/2 where z = zi - ZH. The failure

of the curves to collapse when plotted against the (dimensional) similarity parameter

zt -_/2 suggested by theory attests to the significant effects of the start-up transients

necessary to establish the constant height condition assumed instantaneous in the

analysis. H is achieved by tH _ 0.4S which is selected as the time origin for the

plot of Figure 3.13b. Again, sufficient time is not available to provide full agreement

with the analytically determined similarity profile, which is shown on the figure. It is
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Figure 3.12: h(zi, t) (ram) as a function of t(s) for six fixed locations z -- z_ and

t > 0.7s. Straight lines are fitted to the data. By interpolation, the location for

which the slope is found to be zero is Zg = 11.24mm, where H_xp -- 3.73 ± 0.15ram.

The theoretical value H -- 3.67mm is shown by the dashed line.

apparent from Figure 3.13b that, after an initial oversh_t_ the traces are converging

to the analytical result as time increases (see arrow: on figure). In Figure 3.14, the

time origin is shifted to to = 0,09s _ suggested:by both the inertial time scale to,

Figure 3.9, and the fit coefficient for _(t), Figure 3.8. A collapse of the data is seen

being especially good near the tip, but a general collapse of the surface profiles for

0.09 < t _< 0.4s iS also established. The similarity solution of eq 2.64 is provided for

reference.

3.4.2 Surface Profile, h(z, t) for data set T2

Figures 3.15-3.18 present the data for test T2. For this test Z H -_ 13.72mm (Figures

3.15 and 3,16), and He_p is found to be 1.97 ± 0.08ram (Figure 3.16) compared to

H = 1.94mm calculated by eq 2.100. The time at which the constant height condition

is first established is found to be tH -----0.4s. As for test TI, the surface traces do not

collapse in the time available when plotted against zt -I/2, Figure 3.17a. However, the

plot of h as a function of z(t - tH) -I/2, Figure 3.17b, displays nearly full agreement

with the similarity result by the end of the test, t = 2.031s. Due to the limited

duration of the test, ample time was not available to guarantee this observation for

t >> tH. The initial overshoot and convergence of the scaled profiles toward the

theoretical solution as time increases is also observed for T2 using the time origin
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Figure 3.13: (a) h (mm) as a function of z/t 1/2 (mm/s 1/2) for nine of the ten surface

profiles of test T1. Trace at t = 0 is not shown. (b) As in (a) except that the

time origin is shifted by tH ---- 0.4S. The last four traces are shown, the first trace

is at t = 0.547s. The traces converge towards the theoretical curve as t increases as

indicated by the arrow.
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Figure 3.14: h (ram) as a function of z/(t - to) 1/2 (mm/s 1/2) for T1 with to = 0.09s

providing tip collapse. Full theory provided along with linear tip solution. The first
trace shown is:at t = 0.156s.

tg, as is indicated in Figure 3.17b. The tip location data for T2 (see Figures 3.8 and

3.9) are best fit for the time origin to = 0.03s which is employed in Figure 3.18.

3.5 Discussion

For cases T1 and T2, Table 3.3 lists the important time constants arising from the

assumptions inherent in the asymptotic analysis (see Section 2.7.1). The Ohnesorge

number Oh is also provided. The first two time scales are the viscous and slender

body scales calculated from eqs 2.107 and 2.105 with _ = 30 °, 0 = 0. The third is the

'system' inertial time scale which characterizes the time required for the transition

from a gravity dominated to a surface tension dominated interface [32]. R2c/2_ is the

global viscous time scale where R_c is the radius of the inscribed circle for the test

cell cross-section. Comparing the magnitude of these scales, it is not surprising that

T2 should agree more favorably with the predictions than should T1 over such short

duration tests. Considering the low values of the time constants in the table, what

is surprising is that T2 is not fully predicted by the theory. 3

3Cases T1 and T2 were selected from a family of tests conducted to explore repeatability and

sensitivity to container surface condition. Within each family, whether the containers were initially
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Figure 3.16: h(z_, _) (ram) as a function of t (s) for T2. Each data set is at constant

zi where there is a constant increment of approximately 0.8mm.
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Figure 3.17: (a) h (ram) as a function of z/t 1/2 (mm/s 1/2) for ten of the eleven surface

profiles of test T2. Trace at t = 0 is not shown. (b) As in (a) except that time origin

is shifted by tH ----0.4s. The last five traces are shown, the first trace is at t -- 0.586s.

The traces converge towards the theoretical curve as t increases, as indicated by the

arrow.
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Figure 3.18: h (ram) as a function of z/(t -to) !12 (mm/s 1/2) for T2 with to = 0.03s

providing tip collapse. Full theory provided along with linear tip solution. The first
trace shown is at t = 0.039ts.

Recall that for comparison with the asymptotic analysis, z is measured relative

to ZH and that for both T1 and T2 tH --_ 0.4S. However, fluid flows intQ the corner

(z > 0) prior to tH and so there is an initial volume of fluid within z > 0 by the

time t -- tH. This is the reason that the scaled traces of Figures 3.13b and 3.17b first

overshoot and then converge towards the predicted behavior. As _ - tH increases, the

initial volume of fluid which was present in the corner at time tH constitutes a smaller

portion of the total volume in the corner and the traces begin to show evidence of

collapse about the predicted profile. The time necessary for complete collapse over

the entire domain z > 0 is presently uncertain, particularly in light of the fact that

SH --_ 0.48 while the duration of the experiment was only about 2s.

Using $o as determined from the inertial reorientation time of the interface, the

scaled traces of Figures 3.14 and 3.18 reveal collapse at the tip for $ > 2to and show

dry or were purposefully pre-wetted with a thin film of the test fluid prior to the test, the mea-

surements of the surface profiles were statistically equivalent. This agreement is not common, but

occurs for these tests because of the natural pre-wetting of the corner prior to the drop tests despite

the presence of gravity. This is not the case for all cells, but for tests T1 and T2 the presence of a

thin pre-wetting film along the corner should classify the entire family as: employing the 'pre-wet'

surface condition.
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Test Oh

T1 0.008

T2 0.05

1 2 3 4

H2/8v lO.7#H/a (pR_c/a) 1/2 R2c/2u

0.8 0.004 0.12 10.5

0.05 0.05 0.05 0.6

Table 3.3: The Ohnesorge number Oh and time constants, in seconds, for T1 and
T2.

remarkable linearity for the traces taken at times t < tH.

3.5.1 Tip Solution Approximation

Figures 3.14 and 3.18 show many surface profiles for which the height is nearly a

linear function of z/(t - to) I/2, These linear profiles are reminiscent of the leading

order tip solution identified in Section 2.6ii w!iere h = I -_/V_ and rhip = V_. This

approximate solution is compared to the data for T1 and T2 on Figures 3.14 and

3.18, respectively. The experimentally determined tip location is nearly bracketed

by the full similarity and linear tip solutions, In fact, for test T1 which, was of 1.01s

duration, the linear tip solution agrees well with the data while the full solution does
: : :: "

not. That such agreement is observed for the linear tip solution is less likely due

to coincidence than it is to the strong influence of the solution at the tip, especially

prior to formation of a system length scale such as H. The flow velocities are highest
at small times, As the column extends in length, the time for information to be

propagated downstream from z = 0 to the tip is t N I: 2. This creates a time lag

between the origin z = ZH and the tip. Consequently, though the constant height

boundary condition is established at t = tH, the tip will not respond to this condition

untilsome time later. Thus, the tip region, for a time, acts independently of changes

in conditions at z = 0, and the tip solution is better suited for predictions of the flow

at small times.

3.5.2 Start-up Problem

As typified in Figure 3.18 the linear surface profiles for t < tH increase in height,

then for t _-- tH the profiles collapse, and then give way to the predicted form of

the similarity solution as t increases above tn. The fact that the linear profiles of

these surfaces are reminiscent of other solutions to the governing similariW ODE (see

Figure 2.8) makes one suspect that this 'start-up' problem might also be analyzed.

Recalling the transformation h = _-aF(v), it is surprising that for a = 1/5 a
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Figure 3.19: hit 1/5 (mm/s 1/5) as a function of z/t 3/5 (mm/s 3/5) for T2 for the first five

traces (t < tH) excluding the trace at t = 0. The uncollapsed trace is for t = 0.039s

and h/_ 1/5 = 2.62 at the origin. The full theoretical and linear tip solutions are

provided.

favorable collapse of the surfaces for t < t H is observed for T2 as shown in Figure

3.19. The case of a = 1/5 is coincidentally the case of constant flow at rl = 0 solved

in Section 2.6.3, the exact solution of which is presented on the figure' 4 A cause for

the slight overprediction of the data by the theory could be attributed to dynamic

contact effects, since velocities perpendicular to the contact line (and thus Ca) are

maximum during this portion of the flow (see Section 2.7.3). The value of the flow

rate Q is necessary to quantify such effects as will be illustrated.

The linear tip solution for the constant flow problem also well predicts the surface

profile during start-up as shown on Figure 3.19. Figure 3.20 plots h(zi, t) for T2 on a

in-ln scale for the zi nearest ZH as determined by interpolation (as described in Section

3.4.1). The slope of I/5 is indicated as are the times for the first two surface traces

appearing in Figure 3.18 and 3.19. The constant height time tH is also identified.

The fact that the initial transient of the constant height solution is well governed

by, in this case, the constant flow problem, suggests that the time constants of the

4The condition of a = 1/5 was not found to be true for all of the tests evaluated in this manner,
but was found to vary somewhat with initial Bond number and fluid properties. The case of T2 is
selected for ease of discussion.
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Figure 3.20: h(zi, t) (ram) as a function of t (s) for T2. Data taken at zi _ ZH. H,

tH and slope a = 1/5 are indicated,

latter situation supersede in relevance those of the former. The time constants for

the constant flow problem are listed in Table 3.4 for tests T1 and T2. The constants

are functions of (_ and (_TI _ (_T2. The first constant is the viscous time scale (eq

2.125) while the second stems from the c2 << 1 constraint (eq 2.123). The latter is

completely negligible in contrast to the former which may help to explain the quality

of the agreement between the data and predictions in Figure 3.19. For T2 it is possible

to estimate (_ using h/t I/5 = 2.62 (mm/s I/5) at z = 0. This gives (_ _ 7.8 × 10 -8

(m3/s) and the viscous time scale can be calculated to be -_ 1.5s. This implies that

at z = 0, the worst case, inertia is always present during the constant flow process.

(Recall that the constant height condition is established at approximately t __ 0.4s

for this test.) Inertial effects decay as _ h 2 as the tip is approached which further

vindicates the linear tip solution. An estimate of the capillary number using eq 2.130

with (_ for T2 shows Cad "" 5.3 × 10-5t -a/5 which, employing Hoffman's correlation

eq 2.110, produces dynamic contact angle effects on the order 0d _ 20 °, and I0 ° at

times t ---- 0.039 and 0.4s, respectively. The impact of a change in effective contact

angle of this magnitude is moderate and f increases 14% for 0 -- 0d = 20° from

its value at 0 = 0stat = O. The increase in f (decrease in surface curvature) is not

expected to decrease the tip velocity by more than 8% (see eq 2.114 adapted to the

constant flow scenario).
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Test 1

7.54( q
T1 5 × 10"Q 4/a

T2 1 × 109Q 4/3

2

96.5(#/o')3/2Q 1/2

2.86Q1/2

30.6Q1/2

Table 3.4: Time constants for T1 and T2, in seconds, as determined by constraints

for the constant flow similarity solution.

3.5.3 Further Remarks

As discussed in Section 2.6.4 solutions to the asymptotic eq 2.73 at the tip are linear.

Als0, in the near tip region several of the modeling assumptions (e.g. low inertia and

low z-curvature) are best satisfied. In fact, the linear tip solution does a better job

of predicting the tip location for capillary rise than does the full solution at small

times. These findings, along with the _bservation that the start-up problem for the

capillary rise experiments may be governed by the transformation:h = TaF(_7), where

a for T2 was found to correspond to the constant flow similarity solution (a = I/5)_

leads one to suspect that the problem of capillary rise might be dissected into start-up

(t < tH) and constant height (t >> tH) regimes. An intermediate regime must provide

matching for the two solutions for times t _ tH. In this intermediate regime, the

tip, acting (temporarily) independently of changes at the origin, maintains its depen-

dence on the constant flow_like similarity solution for start-up while at the origin the

constant height similarity profile is established which propagates downstream. An

intermediate region is necessary to provide matching. Numerical solutions of the full

Navier-Stokes equations would be helpful in this respect and would aid in identifying

the regimes through which the flow transitions enroute to the _i/2 dependence.

Since the capillary rise problem at small times is shared between a constant flow-

like solution during start up, where _ _ t 3/5, and the constant height solution, where

L _ _i/2, it is no wonder that £: _ ti/2 gives a reasonable representation of the tip

location for all time[
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Chapter 4

Conclusion

4.:1 Summary of Results

4.1.1 Analytical Contributions

In this work the governing equations describing capillary flows in containers with

interior corners are analyzed under the constraints of a slender flnid column, slight

surface curvature along the flow direction, low inertia, and low gravity. The quasi-

steady viscous streamwise flow is solved, averaged over the cross-sectional area, and

using a local mass balance leads to a second order nonlinear diffusion equation for

the height of the meniscus h(z, t) as measured from the corner axis.

The unique velocity scale used in the nondimensionalization of the problem con-

verts a numerical constant of O(1) to c_ used by other investigators [9][11][17] to an

0(1), tightly banded function 1/8 < F_ < 1/6 for the shear free surface condition.

This feature of the scaling clarifies the geometric influence of corner half-angle a

and contact angle 0 and shows that, in general, contact angle effects are manifest

primarily through the alteration of the driving pressure gradient for the flow and not

through significant changes in the cross-flow area. The banded nature of Fi signifi-

cantly lessens the dependence of the analysis on any numerically computed constant

and, thus, the effects of container size, container geometry (including aspect ratio),

and system contact angle, whether static or dynamic, may be assessed by inspection

of the closed form results.

Two simple problems are considered first. The problem of a steady corner flow

is solved to yield the maximum capillary pumping rate. Next, a solution is found

for a perturbed fluid column of infinite extent. This solution yields a time constant
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which is useful in estimating settling times of disturbed systems. The geometric time

constant T is shown to increase with _-1 as 6 --_ 0 (_ = _/2 - _ - 8) and is minimized

for c_ = 30 °, _ = 0. Gravity acting perpendicular to the corner axis is added to the

infinite column analysis and the resulting solution provides the time response and

stability limits of the perturbed system as a function of Bond number, Boll.

The governing equation is then transformed into a general similarity form. For

problems with an advancing tip, h(ztip, t) = Oi an invariant transformation is em-

ployed which, by replacing one boundary condition, permits the use of a single

step backwards Runge-Kutta technique when numerical solution is necessary. This

method is accurate and efficient: it not only eliminates the need for iteration, but it

also avoids the difficulties faced by other numerical techniques (i. e. forward shooting

and two-point boundary value met:hods) in resolving the solution near the tip.

The generalized similarity equation is solved for a range of transform parameters,

a and b, and it is shown that a linear tip solution is valid near and at the tip for any
choice of a. The high degree of _nearity of_he solutions is noted for a >_ :I/'5 and for

a = 1 an analytic solution is found which produces an exact linear surface profile.

These linear-tending solutions provide insight into the start-up flow for the capillary

rise experiments.

The similarity solution of Dong and Chatzis [17] for the case: of a capillary flow in

an initially empty corner, where at time t = 0 + fluid is introduced such that. the height

of the meniscus h(0, t) = H is _ed for all time, is re-formulated and solved. This is

called the capillary rise problem in this study. The linear tip solution applied to this

problem, though only appropriate in the near tip region, also produces the correct

constant height condition at z 0, This feature is exploited in comparisons with

the results of drop tower experiments for this problem. The analysis is extended by

incorporating the influence of gravity perpendicular to the corner axiS. The stability

limit of the flow to an unfavorable orientation and magnitude of gravity is found to

agree with that determined for the infinite column solution. The constant height

condition is calculated using the approach of de Lazzer and Langbein [29] for the

cases of n-sided regular polygonal and rectangular cross-sectioned containers. These

results are applied to the experiments which employ test cells of like geometry.

New similarity solutions for a spreading drop (constant volume) and constant flow

condition at h(0, t) are found, the former yielding an exact analytic expression. A list

of closed form expressions for key Characteristics of the flows for the three similarity

solutions is provided (Section 2.6.7). Observation of this list is useful for comparisons.

For instance, the time dependence for the tip location/_ for each similarity solution

is: capillary rise Z: _ t 1/2, spreading drop Z: _ _2/5, and constant flow/:_ t3/5.

The constraints on each of the three similarity solutions are quantified and also
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listed for comparison(Section2.7). Thelubrication approximationdemandsaslender
fluid column, the establishmentof which requiresa time scalethat is proportional
to the fluid viscosity #. On the other hand, the neglect of inertia dependson a
viscous time scalewhich is inverselyproportional #. The constraints of negligible
curvature along the flow direction, gravity acting both perpendicular and parallel
to the flow direction, dynamic contact angleeffectsat the moving contact line, and
other problem-specificconditions arealso considered.

4.1.2 Experimental Contributions

Experiments are outlined and test data is presented for the specific problem of cap-

illary rise in transparent containers with interior corners after a step reduction in

gravity. Test cells are employed which minimize optical distortion due to refraction.

A 2.2s drop tower is used to access the low-gravity environment. An extensive data

set is collected over an unexplored range of flow parameters. Measurements reveal

repeatability and accuracy, the role of inertia and column slenderness, and the effects

of corner half-angle, container size, container aspect ratio, and fluid properties (with

0 = 0). The locations of the advancing tip and global meniscus at the cell centerline

are recorded as functions of time. An automated surface digitization technique is

employed to measure surface profiles over the entire length of the column h(z, t). It

is shown that though some measurements correlate well with the predictions from

the asymptotic analysis, the full surface profile measurements uncover discrepancies.

The initial transient due to the step reduction of gravity, characteristic of most

drop tower tests, is governed by the inertial response time of the interface, to. For

the irregular containers of this study, capillary surfaces are established when to _-

0.75(pR3c/_)I/2,: where R/c is the radius of the inscribed circle for the container cross-

section. This result compares with the results of Siegert et al. [32] who study the

response of fluid interfaces in containers of rotational symmetry. The time to is useful

in providing a time origin for the capillary dominated flow.

It is surprising that there exists a location of the interface which appears to remain

stationary in time during the capillary rise experiments. This observation leads to

the identification of a system origin where the constant height assumption for the

similarity solution is applied. This solution in turn predicts the t I/2 dependence for

the flow. Specific experimental attention is paid to the establishment of this constant

height condition and means for determining its validity and location are presented.

The time tH required to establish this constant height is used as the time origin for

comparisons of the similarity solution to the experimental results. It is shown that

for times t > tH the scaled surface profiles first overshoot and then collapse towards
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the similarity solution as t increases. This 'overshoot' behavior is attributable to

the fact that by the time tH a significant amount of fluid has already entered the

corner. The period to < t < tH is the start-up period and for a special case (test

T2, see Section 3.5.2) it is shown that the start-up flow is also largely governed by a

similarity solution, but for the case of constant flow.

From such results it is observed that the initial transient experienced by the fluid

is governed first by inertia t < to, then by a constant flow-like regime for to < t < tH,

where h _ t a, then by an intermediate regime which matches the tip profile (perhaps

determined by a similarity solution as in the case of T2) to the constant height

similarity profile extending from the origin, and finally by the constant height solution

alone for t >> tH. For both the constant height and constant flow problems, solved

in connection with the presentation of the data, the linear tip solution was found to

give an adequate representation of the interface (slope and tip location) using the

time origin of to. This success is due in part to the facts that the tip solution is

the one initially established during start-up in the absence of a system length scale,

that for a > 1/5 all similarity profiles show a high degree of linearity, that a time lag

exists (t _ 1:2) between changes in h(0, t) and the tip, and that inertia and corner-

axis curvature are negligible in the near tip region. Since the capillary rise problem

at small times is shared between a constant flow-like solution, where _: _ t 3/5, and

the constant height solution, where/: _ tI/2, it is no wonder that/: _ t I/2 gives a

reasonable representation of the tip location for all time] The linear tip solution is

recommended for small times. The full similarity and linear tip solutions appear to

bracket the measured behavior of the flow.

4.2 Recommendations for Future Work

The result of the velocity scale leading to Fi _ O(1) significantly lessens the de-

pendence of the analysis on any numerically computed constant. Analytical inves-

tigations probing the added effects of dynamic wetting, free surface shear, surface

tension gradients due to temperature or concentration gradients, and/or a partici-

pating overlaying fluid have a firm basis from which to proceed.

As is seen from surface traces of the developing flows during the capillary rise

experiments, the general form of the similarity solution is matched at the tip where

the effects of corner-axis curvature (fc 2 <_ 1) and inertia are negligible. Upstream

at the apparent origin where the constant height condition is assumed applicable,

these constraints are not readily satisfied and unpredicted corner-axis curvature re-

mains throughout the tests. The influence of this curvature is central to the start-up
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problem wherecurvaturesperpendicularand parallel to the corner-axisareof equal
order. A numerical analysisincorporating the higher order, and presentlyneglected,
curvature terms in the normal stressequationwould eliminate the dependenceof the
solution on the constant height condition which is fortuitously, though incidentally,
provided by the flow and not a true boundary condition for the governing system
of equations. A completenumerical solution to the Navier-Stokesequations would
add insight into the impact of inertia during the initial stagesof the flow as well as
identify the transition of the flow betweencertain power law regimes.

Experimentsconcerningspreadingdropsin opencornersmayprovide anexcellent
data basefor whichto comparefurther analyses.Sincefor this flow scenarioan exact
analytical expressionwasfound, the influenceof first order inertia, dynamic contact
angle,and/or corner-axiscurvature may be consideredin an asymptotic analysis.
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Appendix A

Analytical Details

A.1 Equations and Boundary Conditions

Governing system of equations for capillary dominated flow in an interior corner.

All quantities are dimensional. See Figure 2.1 for coordinates and notation. The

governing equations, following Davis [33], are the incompressible Navier-Stokes and

continuity equations

p(vt +v. Vv) = -VP+_V.T (A.I)

T_ = Vv + (Vv) T (A.2)

v._=0 (A.3)

where v = (u, v, w). A passive overlaying fluid is assumed and body forces are

ignored. The boundary conditions for these equations are as follows: The no-slip

condition is applied along the walls, v = 0 on y = ix tan c_. At the free surface

S(x, y, t), the zero stress conditions are

T-n-tl -- (1 + S_)-1/2(1 + IVSI2) -1 [(1 - S_ + S_) (uy + vx - Sz(vz + wy))

- Sz(vy+wz)) ] =0 (A.4)+2s_(_x- _ sz(_+ _) -

T._. t== (1+ S#)-'/=(1+ IVSI=)-*/= [(1- S#)(_=+ _=)- Sy(v=+ wy)

where tl, t2, and n are outward unit tangents and unit normal to S is given by

_,= (1+ IVSl_)-_/_(1,-s_,-s:) (A.6)
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tl = (1 + S_)-1/2(1 + [VS]2)-I/2(Sy,1 + S_,-SyS_) (A.7)

t2 = (1 + S2z)-l/2(Sz, O, 1) (A.8)

t2 is restricted to the plane y = const, for convenience. The normal stress condition

on S
VS

- P + #W-n. n = 2T/a = aV. (1 + IVSl_)_/_ (A.9)

where the mean surface curvature, Tt, is given by

2_ = (1+ IVSl2)-3/2(&_(1+ s_)+ &,(1 + S_)- 2SySzSv, ) (A.10)

and where

T.n.n = 2(1+ IV<2)-1 (ux- S_(_ + vx)- & (_, + wx)

+SyS,(vz + wy) + 5_vy + S_wz) (A.11)

with IVSI 2 = 5_ + S_. The two known boundary conditions on S are S = h and

Sy = 0 on y = 0, and the two assumed conditions at the contact line (y = Y,_a_) are

S = Yma,/tan c_ and

n. k = (1 + [VSI2)-l/2(sin a 4- S_ cosa) = cos0

The former is the interface wall intersection condition and the latter is the contact

angle (static) condition. Here, k-- (sin a, q: cos a, 0).

A.2 F_ Details

All solutions include at least terms up to second order for completeness. Recall

(wo> = -Fih_ (note Fi > O)

where

2 f f_i_ fso
Fi = _A .Io .*,Jim wodx d9

FA is the cross sectional area function and y = 9/m, m = (tan a)/hf, 5 = 7r/2-a-O,

= 1v/2 - a, ¢ = 6/_. ¢ = 1 is the case of 0 = O.

FH, _2 << 1, Free Surface
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Substituting _ for a and dividing by cos 2 a, eq 2.29 becomes

OPo 02wo _ 02Wo- + tan 2
Oz Ox 2 Oy 2

(A.12)

subject to Wo = 0 on x = y and

OWo OSo CgWotan2 _ _- 0
Ox Oy cgy

on x = So. The pressure gradient term has been rescaled, t5o = t:)o/cos 2 _, and is

O(1). Expanding Wo and tan 2 _ in powers of _t2 yields

Wo = Woo H- _2Wo 1 -4- ... (A.13)

and for eq A.12

(_/5o a2_Uo 2_-_4 a2"WoOz - + +...) oy2 (A.14)

with boundary conditions Wo = 0 on x = y and

CgWO(ox 2_ ...)OS°OW°oyOy_2 + 3_4 + = 0 (A.15)

on x = So. By Expanding So and its derivatives in powers of _2 the system of eq

2.29 and its boundary conditions may be solved to O(_ 2) giving

ooo: o( )2 + h(y- x) (A.16)

where

Wo 1

(A.17)

Note that these expansions are correct regardless of the sign of 6 as long as 62 << 1 is

maintained. In this way positively and negatively curved surfaces may be solved for

cases of slight curvature. No solution of this nature is possible for ]6[ _ O(1). The

average velocity for the case gt 2 << 1, (Wo>zZ, can now be determined to O(_ 2) using

(wo)zi = 2c°t _ f0Y'_ fys°
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Performing the integration to O(f_ 2) produces

Oh

(Wob!= -F._

where Fxx is given by eq 2.45.

(A.19)

3. Fnc, _2 << 1, Captive Surface

The solution for Fiic follows similarly as that for FII above only the boundary

conditions applicable to eq A.14 are wo = 0 on x = y and wo = 0 on x = So. The

zeroeth and first order solutions give

+ (A.20)

Substitution of the above into the integral eq A.18 yields the full expression for FII_

given by eq 2.46.

4. Fhvd, Fhvd_, Hydraulic Diameter Approach, Free/Captive Surface

The average velocity for the cross flow problem may also be estimated using the

familiar hydraulic diameter approach in which

R 2

"_hvd p (A. 22)(_o)hyd= -- _oz
8_

where

_o is the wetted perimeter.
nondimensional result

with

2A

Rhvd -- .p (A.23)

Determination of A and 7_ geometrically leads to the

Oh

(Wo ) hvd = -- Fhvd-_z (A.24)

1( )2Fhyd = g f _m5 (A.25)
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and FA given by eq 2.35. For the captive surface condition the wetted perimeter, 7_,

is the entire perimeter of the cross flow area such that

Yhyd = g (_ 5sinc_ (A.26)
1+_

A.3 Similarity Details

In this appendix the similarity parameters a and b are determined for the cases of

(I) capillary rise, (II) spreading drop, and (III) constant :flow.

I. Capillary Rise.

A mathematical treatment of the generalized similarity equations and applicable

solutions is given by [25] in which the interest was nonlinear heat conduction. Specific

details as applicable to the fluid mechanics problem are provided below. The desired

boundary conditions for the capillary rise problem are h(0, _-) = 1 and h(L, _-) = 0;

the equation for h(z, t) is further constrained by

=
Though the governing ODE is only second order, three conditions are necessary due

to the introduction of the third unknown £(T). The first condition, that the height

h is fixed at z = 0, is a conjecture given support by the experiments described in

Section 3.4.1. The second boundary condition is the zero height condition at the

meniscus tip. The final condition is an integral mass balance equation which states

that the flow rate through the cross section at z = 0 over time -c is equal to the volume

of fluid in the corner from z = 0 to the tip at z = £(t). By using the transforms of

eq 2.59 and applying eq 2.61, the integral equation can be written as

2C_ C_ = f,7.p F2d_ (A.28)3_+b+1(F_F,)__-0_0
It should be noted that the integral mass balance condition is always satisfied by

any choice of a and b consistent with eq 2.61. To satisfy the condition h(0, v) = 1,

however, it is necessary to choose a = 0, b = -1/2. With the selections C1 = 1 and

C2 = 2 -1/2 eq A.28 becomes

f_tip2(_F,) 7--0+ F_, = o (,.29)
JO

II. Spreading Drop
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For a drop of constant volume the boundary conditions are hz(0, T) = h(£, _-) = 0.

The integral mass balance

f0 L = n (A.30)h2dz

states that the volume integral over 0 _< z _< £ is a constant t¢ for all time. Substi-

tuting the similarity transforms of eq 2.59 into the above yields

C 2 fmip1 .r2_-b F2d_ = n (A.31)
J0

By applying eq 2.61 it can be shown that this equation yields similarity when a =

-1/5 and b = -2/5. For the selection of C! = (n2/5) 1/5 and C2 = (52n) -1/5 eq A.31

simplifies to

on_p F2drl = 1 (A.32)

_tip can be determined directly by substituting the exact solution for F into the above

integral (or by substituting values for F +, etc.).

III. Constant Flow

As for the spreading drop problem, the similarity parameters a and b are deter-

mined from the integral mass balance. For this case

f0 L(_) = 2qT (A.33)h2dz

which states that the constant flow rate through the cross sectional area at z = 0 at

time _- is equal to the volume of fluid in the domain 0 < z < £(_-). Substituting from

eq 2.59 yields

6 2 fm_p1 T2a-b-1 F2d_ = 2q (A.34)
Jo

Applying eq 2.61 it can be shown that similarity is achieved with a = 1/5 and

b = -3/5. For C1 = (5q2) _/5 and C2 = (53q) -1/5, the equation can be written as

= _2 (A.35)
J0 5

A.4 Similarity with gx

The influence of gravity in the x-direction can be incorporated into the analysis. In

the dimensional problem the pressure needs only to be modified as

(7

P'o- h'f + pgh'
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so that

Oz

In nondimensional terms this produces

so that

Substitution of this result into eq 2.23 noting h 2 _ A and _- - F_t/2 yields eq 2.75.

For the infinite column problem, solving for Poz in a similar manner and by expanding

h = ho + chl and taking ho = const yields eq 2.58.
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Appendix B

Correction for Optical Distortion

An approximate correction to optical distortions attributable to mismatched indices

of refraction between the cell material (NDI) and test fluid (ND2) could be made by a

ray trace analysis. Assuming the surface S(y, h(z, t)) is a portion of a circle in the x-y

plane, a simple relationship may be determined between the true value of h and that

of the apparent h measured experimentally, here labeled hexp. The sketch of Figure

B.I is appropriate for the long working distances of these experiments. Knowing

the slope and intercept for the line segment O-P, the conditions of its tangential

intersection with So (see eq 2.32)produce the relationship

1 + tan_tan c_

h = hexp I + f - f sec _/
(B.I)

where

"Y----(_-sin-l\ ND: ]

Optical distortion increases with increasing c_ and for the capillary rise test a maxi-

mum was experienced for the square acrylic cell, Not ----1.491, and the 0.65cs PDMS

fluid, ND2 -_ 1.374. This worst case gives h = 0.919he_p, approximately a 10% cor-

rection. For the same fluid in an equilateral triangle a correction of 5% results and

many test corrections were 3% and below.
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NDt

Figure B.I: Schematicof ray trace correctionfor h(z, _) measurements.
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